Comparison of Land Surface Temperature From a Land Model, Remote
Sensing, and In-situ Measurements

NCAR
Study goals

* Develop a testing and evaluation system for analyzing land surface
temperature (T,) from a land surface model, MODIS satellite-
observed T, and in-situ measurements;

* Focus on consistent comparisons among the three sources;

* Investigate the sensitivity of a land surface model to turbulent
exchange parameterization.

Modeling Tools and Data

Land Surface Model
 Community Land Model (CLM) v4.0 (Oleson et al. 2010)

« Offline 1.9°x2.5° simulation driven by obs-based atmospheric
forcing data (Qian et al. 20006).

CEOP Observations

» Coordinated Energy and Water Cycle Observation Project T,
observations for evaluation in 2003

* 4 semi-arid sites: Desert Rock, Colorado, Tongyu, Gaize
MODIS T, Observations

* 4x daily LST monthly-averaged product (MOD/MYD11C3) plus
quality control; global 0.05° product

MODIS and Model T, Bias Relative to CEOP

 Significant cold bias exists between in-situ measurements and both
MODIS and CLM,;

* Bias magnitude is generally larger at night
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Figure 1. CLM4.0 grid box number percentages over land globally versus
clear-sky percentages using results from each overpass for the entire
month in January (top) and July (bottom) 2003.

Table 1. Monthly mean T, differences between MODIS, CLM-C and CLM-N versus in
situ observations over four stations at four satellite overpass times in July 2003. Only
the values under clear-sky conditions as indicated by the MODIS Ts data are used.
The corresponding biases between T, and downward shortwave radiation (SW,)
between CLM forcing and in-situ measurements (i.e., forcing minus observation) are
also shown in the last two columns. Biases that are statistically significant at the 1%
level based on the Student’s t-test are indicated in bold.

Global Model T, Bias Relative to MODIS

 Arid regions are dominated by daytime low T, bias
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Figure 2. Monthly T, differences between CLM-C and MODIS at four
overpass times in July 2003. At each overpass time, CLM-C monthly T,
values are computed only for grid boxes with MODIS clear-sky fraction >

50% for at least 10 days in the month.

T, diff [K]

MODIS CLM-C CLM-N T, diff SW diff

1:30a 4.1 6.5 5.7 -10.3 0

Desert  10:30a 2.2 -3.8 1.9 -3.0 142
Rock  1.30p 13 4.4 16 18 -154
10:30p 4.2 5.7 -4.9 -8.5 0

1:30a 4.1 5.2 -4.8 9.9 0

Colorado  10:30a 2.3 7.0 6.8 4.3 -207
1:30p 1.3 -5.9 5.5 3.7 78

10:30p 4.3 -5.1 4.6 -8.0 0

1:30a 2.6 0.4 0.2 0.9 0

Tongyu 10:30a 2.3 -5.3 -4.9 4.2 -216
1:30p 1.2 2.4 2.0 1.9 79

10:30p 1.9 0.2 0.4 0.7 0

1:30a 3.5 2.3 1.2 -3.8 0

Gaize  10:30a 10.6 -8.8 7.1 9.3 -216
1:30p 1.9 -11.4 -8.9 7.8 -186

10:30p 5.2 2.8 1.6 -4.0 0

Model Modifications to Improve
Performance in Arid Regions

* To improve model T, performance in arid regions, new formulations
are added that modify turbulent exchange for heat (Zeng et al. 2012):

* In(zy,/2n) = 0.36 (U« zy,, / V)02
* Umin T 0.07 pO/ P (ZOm/ZOg)O'18

where z,.,, z,,, Zy, are the roughness length for momentum, heat
and bare soill; u.is the friction velocity; v is the molecular viscosity of air;
and p,/ p is the reference air density divided by the actual air density

* The first modification effectively reduces the coupling of the
atmosphere with respect to heat

* The second modification increases the atmospheric coupling during
stable boundary layers (typically at night)

* These simulations are denoted by CLM-N. Control as CLM-C.
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Model T, Bias Changes Due to Modifications
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Figure 3. Hemisphere mean T differences between CLM-N and CLM-C
versus bare solil fraction in 5% intervals at four satellite overpass times
averaged in January and July 2003. NH and SH denote Northern and
Southern Hemispheres, respectively.

* Model performance is improved over arid regions globally
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Figure 4. Global distribution of Ts differences between CLM-N and CLM-C at a)
10:30am; b) 1:30pm, and between CLM-C and MODIS at c¢) 10:30am; d)
1:30pm in July 2003. At each satellite overpass time, monthly Ts is computed
over grid boxes with bare soil fraction greater than 30% and MODIS clear-sky
fraction greater than 50% for at least 10 days in the month.

Summary

 Five factors contributing to T, differences among model simulations:

1. Difficulty in properly accounting for cloud cover information at
appropriate spatial and temporal resolutions,

. Model uncertainties in surface energy budget computations,
. Quality of atmospheric forcing data,

Representation of surface emissivity among data sources,

. MODIS T, uncertainty;

* This work is a first step toward evaluating LSM outputs using remotely
sensed T products over global land areas.
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