

NCAR

Study goals

- Develop a testing and evaluation system for analyzing land surface temperature (T_s) from a land surface model, MODIS satelliteobserved T_s , and in-situ measurements;
- Focus on consistent comparisons among the three sources;
- Investigate the sensitivity of a land surface model to turbulent exchange parameterization.

Modeling Tools and Data

Land Surface Model

- Community Land Model (CLM) v4.0 (Oleson et al. 2010)
- Offline 1.9°x2.5° simulation driven by obs-based atmospheric forcing data (Qian et al. 2006).

CEOP Observations

- Coordinated Energy and Water Cycle Observation Project T_s observations for evaluation in 2003
- 4 semi-arid sites: Desert Rock, Colorado, Tongyu, Gaize

MODIS T_s Observations

• 4x daily LST monthly-averaged product (MOD/MYD11C3) plus quality control; global 0.05° product

MODIS and Model T_s Bias Relative to CEOP

- Significant cold bias exists between in-situ measurements and both MODIS and CLM;
- Bias magnitude is generally larger at night

Table 1. Monthly mean T_s differences between MODIS, CLM-C and CLM-N versus in situ observations over four stations at four satellite overpass times in July 2003. Only the values under clear-sky conditions as indicated by the MODIS Ts data are used. The corresponding biases between T_{air} and downward shortwave radiation (SW_{dn}) between CLM forcing and in-situ measurements (i.e., forcing minus observation) are also shown in the last two columns. Biases that are statistically significant at the 1% level based on the Student's t-test are indicated in bold.

			T diff [K]			
		MODIS	CLM-C	CLIVI-N	I _{air} diff	SVV diff
Desert Rock	1:30a	-4.1	-6.5	-5.7	-10.3	0
	10:30a	2.2	-3.8	-1.9	-3.0	-142
	1:30p	-1.3	-4.4	-1.6	-1.8	-154
	10:30p	-4.2	-5.7	-4.9	-8.5	0
Colorado	1:30a	-4.1	-5.2	-4.8	-9.9	0
	10:30a	2.3	-7.0	-6.8	-4.3	-207
	1:30p	-1.3	-5.9	-5.5	-3.7	-78
	10:30p	-4.3	-5.1	-4.6	-8.0	0
Tongyu	1:30a	-2.6	-0.4	-0.2	-0.9	0
	10:30a	-2.3	-5.3	-4.9	-4.2	-216
	1:30p	-1.2	-2.4	-2.0	-1.9	-79
	10:30p	-1.9	0.2	0.4	0.7	0
Gaize	1:30a	-3.5	-2.3	-1.2	-3.8	0
	10:30a	10.6	-8.8	-7.1	-9.3	-216
	1:30p	1.9	-11.4	-8.9	-7.8	-186
	10:30p	-5.2	-2.8	-1.6	-4.0	0

Comparison of Land Surface Temperature From a Land Model, Remote RESEARCH Sensing, and In-situ Measurements

Michael Barlage¹, Aihui Wang² and Xubin Zeng³

¹Research Applications Laboratory, NCAR, Boulder, CO; ²Chinese Academy of Sciences; ³U. Arizona barlage@ucar.edu

- atmosphere with respect to heat
- The second modification increases the atmospheric coupling during
- stable boundary layers (typically at night)
- These simulations are denoted by CLM-N. Control as CLM-C.

- 7.5 17.5 27.5 37.5 47.5 57.5 .67.5 77.5 87.5 97. 7.5 17.5 27.5 37.5 47.5 57.5 67.5 77.5 87.5 97.5 Bare Percent(bined) Bare Percent(bined) January SH 7.5 17.5 27.5 37.5 47.5 57.5 .67.5 77.5 87.5 97.5 Bare Percent(b Bare Percent(bined Figure 3. Hemisphere mean T_s differences between CLM-N and CLM-C versus bare soil fraction in 5% intervals at four satellite overpass times averaged in January and July 2003. NH and SH denote Northern and Southern Hemispheres, respectively. • Model performance is improved over arid regions globally a)10:30an c) 10:30am -10 -8 -6 -4 -2 0 2 4 6 8 10 Figure 4. Global distribution of Ts differences between CLM-N and CLM-C at a) 10:30am; b) 1:30pm, and between CLM-C and MODIS at c) 10:30am; d) 1:30pm in July 2003. At each satellite overpass time, monthly Ts is computed over grid boxes with bare soil fraction greater than 30% and MODIS clear-sky fraction greater than 50% for at least 10 days in the month. Summary
- Five factors contributing to T_s differences among model simulations:
- 1. Difficulty in properly accounting for cloud cover information at appropriate spatial and temporal resolutions,
- 2. Model uncertainties in surface energy budget computations,
- 3. Quality of atmospheric forcing data,
- 4. Representation of surface emissivity among data sources,
- 5. MODIS T_s uncertainty;
- This work is a first step toward evaluating LSM outputs using remotely sensed T_s products over global land areas.

References

Note NCAR/TN-4781STR, 257 pp.

ground heat fluxes over arid regions, J. Hydrometeorol. 13, 1359-1370.

This work is funded by the Joint Center for Satellite Data Assimilation.

Also a relationship between magnitude of bias and time of day

bias changes

- Oleson, K., et al. (2010), Technical description of version 4.0 of the Community Land Model, NCAR Tech.
- Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson (2006), Simulation of global land surface conditions from 1948 to 2002: Part I: Forcing data and evaluations, J. Hydrometeorol., 7, 953–975. Zeng, X., Z. Wang, and A. Wang (2012), Surface skin temperature and the interplay between sensible and