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What is an OSSE?

● A long free model run is used as the “truth” - the Nature 
Run

● The Nature Run fields are used to back out “synthetic 
observations” from all current and new observing systems.

● Suitable errors are added to the synthetic observations
● The synthetic observations are assimilated into a different 

operational model
● Forecasts are made with the second model and compared 

with the Nature Run to quantify improvements due to the 
new observing system

An OSSE is a modeling experiment used to evaluate the impact 
of new observing systems on operational forecasts when 

actual observational data is not available.
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Why do an OSSE?

1.You want to find out if a new observing system will 
add value to NWP analyses and forecasts

2.You want to make design decisions for a new 
observing system

3.You want to investigate the behavior of data 
assimilation systems in an environment where the 
truth is known  



When not to run an OSSE

● When you can't model the phenomena you are 
interested in

● When you can't simulate your new 
observations

● When you can't assimilate your new 
observations



Nature Runs

● Nature Runs act as the 'truth' in the OSSE, 
replacing the real atmosphere.

● Usually, a long free (non-cycling) forecast from 
the best available model is used as the NR

– Model forecast has continuity of fields in time

– Sometimes an analysis or reanalysis 
sequence is used, but the sequence of states 
of truth can never be replicated by a model

– Always a push for bigger, higher resolution 
NR



Nature Run Requirements

● Must be able to realistically model phenomena 
of interest
– Dynamics and physics should be realistic

– Must produce fields needed for “observations”

– Should be verified against real world

● Ideally is ‘better’ than the operational model to 
be used for experiments

● Preferably a different model base is used for 
the NR and the experimental forecast model to 
reduce incestuousness



G5 Nature Run

2 year, 7 km/72L, 30 minute resolution
15 aerosols, ozone, CO,  CO2

http://gmao.gsfc.nasa.gov/projects/G5NR


Common Problems with Nature Runs

● Nonexistence
● Identical or fraternal twins
● Outdated by the time you get to use them
● Gigantic output files and huge computational 

resource requirements

– Output saved at full spatial resolution but 30 
min + intervals



Comparison of temporal and spatial
Interpolation errors compared to 1.5 
km run for Typhoon Guchol (2012).

Spatial interpolation to 27 kmFull resolution (1.5 km, 10 min)

Temporal interpolation (3 hrs)



Nature Run Validation

● Evaluate if NR is sufficiently realistic to yield 
meaningful results

● In addition to the phenomena of interest, the 
NR needs to realistically replicate fields 
needed to generate synthetic observations

● Can't validate everything; corollary – don't 
expect a NR to come pre-validated for your 
needs





Example of  AIRS observations channel 295 at 18 UTC 12 July
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Observation Errors

● Synthetic observations contain some intrinsic 
interpolation/operator errors, but less than real 
observations (usually)

● Synthetic errors are created and added to the 
synthetic observations to compensate

● Error is complex and poorly understood
● Error magnitude
● Biases
● Correlated errors



Calibration

● Adjust synthetic observations and their errors 
to increase realism of the OSSE in a statistical 
sense
● Compare OSSE statistics to statistics using 

real data in the same DAS/forecast system
● Need to decide what statistical metrics to use 

for the calibration, depending on your needs
● Calibrating new observation types?

● Find an analogous data type if possible



Observation count is easy to calibrate



O-F is fairly easy to calibrate because you 
can manipulate O directly.



Some observation correlations are relatively 
easy to calibrate



A-B (analysis increment) is a little harder to 
calibrate, as A and B are not directly controlled

Real OSSE
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Forecast errors are harder to calibrate, 
especially for longer forecasts. Matching of 
this statistic by manipulation of observations 
is difficult to impossible beyond ~24 hour 
forecasts.



Model error 
determines 
forecast skill in the 
longer term 
forecast, so 
calibration is not 
possible (unless 
you want to mess 
with your model).

Red: OSSE
Blue: Real

500 hPa anomaly correlations of
geopotential height



Why believe OSSE results?

New observations can be put into context 
relative to existing observation impacts



Criticisms of OSSEs

● Results only apply within the OSSE system – 
no concrete connection to the real world

● Even the best OSSEs are far from perfect: 
incestuousness, difficulty in generating 
observations and errors, deficiencies of the 
Nature Run

● By the time the new instrument is deployed, 
both the global observing network and the 
forecast models/DAS will be different

● Examples of sloppy or unsuccessful OSSEs



Common Pitfalls

● Very reduced baseline of assimilated 
observational data (ex. no radiance data)

● Other artificial degradation of analysis state
● No validation or calibration of OSSE 

framework
● Obtaining robust results from case studies is 

very challenging

– Use ensemble forecasts if you can!



Choosing Metrics

● Long cycling periods necessary to get 
statistically significant results for most new 
observations

● Anomaly correlation is a difficult metric to 
show appreciable impacts

● What fields do you expect the instrument to 
improve?

● Largest impacts found at analysis time or 
short-term forecasts



Idealized Studies

● Identical twin experiments
● Idealized observations
● Manipulation of observation errors
● Experiments with B, R

● Make use of available “Truth”



Regional OSSEs

● Regional OSSEs are harder than global 
OSSEs

– Two Nature Runs (local embedded in global)

– Two forecast models each using synthetic 
obs

– Shortcuts are very often taken – need to 
carefully examine the methods to ascertain if 
the results are trustworthy



Takeaway

● OSSEs can provide useful information about 
new observational types and the workings of 
data assimilation systems

● Careful consideration of research goals should 
guide each step of the OSSE process

● OSSEs are hard, good OSSEs are harder
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What is an OSSE?

● A long free model run is used as the “truth” - the Nature 
Run

● The Nature Run fields are used to back out “synthetic 
observations” from all current and new observing systems.

● Suitable errors are added to the synthetic observations
● The synthetic observations are assimilated into a different 

operational model
● Forecasts are made with the second model and compared 

with the Nature Run to quantify improvements due to the 
new observing system

An OSSE is a modeling experiment used to evaluate the impact 
of new observing systems on operational forecasts when 

actual observational data is not available.

Basic components of the `traditional' OSSE used to evaluate new observation impact in a numerical 
weather prediction framework. Other uses for OSSEs include investigation of the behavior of data 
assimilation systems and `climate OSSEs' (which have some similarity to NWP OSSEs but also some 
major structural differences and will not be discussed further). 
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OSSEs vs. the Real World

Flowchart comparing OSSEs to operational data assimilation. The two main differences are the 
replacement of the actual atmosphere with the Nature Run (NR), and the use of the NR to verify 
forecasts (and analyses) in the OSSE instead of self-analysis verification.



  

 

Why do an OSSE?

1.You want to find out if a new observing system will 
add value to NWP analyses and forecasts

2.You want to make design decisions for a new 
observing system

3.You want to investigate the behavior of data 
assimilation systems in an environment where the 
truth is known  

The “classic OSSE” is the first item on this list – testing new observing system designs in a 
controlled framework when actual observations are not available (instrument doesn't exist, too 
expensive, etc). 

A potentially valuable study is to compare design possibilities for a new instrument – for example, 
decisions about scan characteristics, orbits, channels, for a new satellite. This can be used to 
determine if a less expensive alternative design will still yield useful results in comparison to the full 
design.

The third point is valuable in the context of design and understanding of data assimilation systems. In 
the OSSE, the availability of the truth for verification allows the direct calculation of analysis errors, 
as well as adjoint and other observation impact metrics, to determine exactly how the ingestion of 
different observations affects the skill of the analysis. These calculations are not possible in the real 
world environment. 



  

 

When not to run an OSSE

● When you can't model the phenomena you are 
interested in

● When you can't simulate your new 
observations

● When you can't assimilate your new 
observations

1. If you are interested in something that your available models (BOTH NR and forecast model) 
produce either poorly or not at all (due to resolution, improper physics, etc), you may be wasting your 
time with an OSSE. In some cases, you might be able to find an alternative field that the model does 
reproduce well, and which has a link to the actual phenomenon of interest.

2. If your NR does not produce the output needed to simulate  your observations, or if you just don't 
know how to simulate the observations well enough, do not do an OSSE.

3. If your desired forecast model does not have suitable DAS to go along with it, or if your 
observations are not suitable for assimilation into NWP models, do not do an OSSE.



  

 

Nature Runs

● Nature Runs act as the 'truth' in the OSSE, 
replacing the real atmosphere.

● Usually, a long free (non-cycling) forecast from 
the best available model is used as the NR

– Model forecast has continuity of fields in time

– Sometimes an analysis or reanalysis 
sequence is used, but the sequence of states 
of truth can never be replicated by a model

– Always a push for bigger, higher resolution 
NR

Both re/analysis based and model based NR are found in the literature. The model-based NR are often 
considered preferable to analyses/reanalyses.
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Nature Run Requirements

● Must be able to realistically model phenomena 
of interest
– Dynamics and physics should be realistic

– Must produce fields needed for “observations”

– Should be verified against real world

● Ideally is ‘better’ than the operational model to 
be used for experiments

● Preferably a different model base is used for 
the NR and the experimental forecast model to 
reduce incestuousness

NR should ideally be able to replicate the atmosphere realistically for not just the phenomena that you 
are interested in forecasting, but also everything needed to simulate all of the observations used by 
the DAS. So, AMVs need a realistic distribution of clouds, etc.

The NR preferably should have higher spatial resolution than the forecast model, and also be more 
realistic in terms of dynamics/physics. In practice, the comparative resolution of the NR and the 
forecast model is often rather similar due to both available resources and limitations of model 
development. When NR are made with bleeding-edge high resolution models, the model behavior can 
be rather buggy, with undesirable behaviors.

In general, the model used to made the NR and the model used for the experimental forecasts are 
more similar to each other than either model is to the real world. Thus, OSSEs tend to suffer from 
insufficient model errors. This is more true for “identical twin” cases in which the same model is used 
for the NR and the experimental forecasts. Lack of model error has complicated impacts, as the model 
forecast skill tends to be too high, resulting in too-skillful backgrounds, so observations have less 
impact, but the information imparted by the observations may have a better chance of 'surviving' into 
the extended forecast instead of being destroyed by model error. 



  

 

G5 Nature Run

2 year, 7 km/72L, 30 minute resolution
15 aerosols, ozone, CO,  CO2

The new GMAO Nature Run is now available. 7 km horizontal resolution (C5760 cube sphere 
native), 72 levels, includes aerosols but not most chemistry. 24 months using SSTs from May 
2005-May 2007.

The NR data may be accessed from http://gmao.gsfc.nasa.gov/projects/G5NR/

Validation of the G5NR is documented in this technical memo: 
http://gmao.gsfc.nasa.gov/pubs/docs/TM2014-104606v36.pdf 



  

 

Common Problems with Nature Runs

● Nonexistence
● Identical or fraternal twins
● Outdated by the time you get to use them
● Gigantic output files and huge computational 

resource requirements

– Output saved at full spatial resolution but 30 
min + intervals

Many different approaches are taken in the literature – some good, some not so much. Identical and 
fraternal twin OSSEs are fairly common, and not always a terrible thing depending on how the OSSE 
is performed. In some “OSSE”s, a true Nature Run is not used in that observations are not simulated 
using the NR fields – these types of studies can be fraught.

Generation of NR s can be very computationally expensive. The output files can be so large that they 
are difficult to handle with standard software. The length of time that it takes to create and validate a 
NR can mean that by the time the NR is ready to use, operational forecast models have already caught 
up to the resolution and physics used in the NR (or surpassed).



  

 

Comparison of temporal and spatial
Interpolation errors compared to 1.5 
km run for Typhoon Guchol (2012).

Spatial interpolation to 27 kmFull resolution (1.5 km, 10 min)

Temporal interpolation (3 hrs)

It is common with large  global NR to save the full spatial field at intervals of 30 minutes-3 hrs. To 
make the simulated observations, the spatial fields are interpolated with bilinear methods, and linear 
temporal interpolation. However, time interpolation can result in not just a loss of high spatial 
resolution features (which often have short timescales), but deformation of large scale features that 
evolve in time. Thus, the interpolated field being sampled to generate synthetic observations may be 
much less realistic than the model output.  It is best to use as frequent temporal output as you can 
afford.



  

 

Nature Run Validation

● Evaluate if NR is sufficiently realistic to yield 
meaningful results

● In addition to the phenomena of interest, the 
NR needs to realistically replicate fields 
needed to generate synthetic observations

● Can't validate everything; corollary – don't 
expect a NR to come pre-validated for your 
needs

It is best to perform at least some sanity check validation of the NR for your given experiment. 
Specifically, validate for any fields needed to generate your new observation type, and also factors 
that influence the metrics of interest for your OSSE. 



  

 

When validating the NR, one would like any section of the NR to be indistinguishable from a 
randomly drawn period from the real world. In this figure is an example of validation of the G5NR 
(GMAO NR).  Monthly mean streamfunction statistics (details unimportant for this illustration) are 
compared for individual months of the NR (red X) and 15-20 years of months from two reanalyses 
(green and blue circles). Ideally, the NR values should fall within the envelope of the real world 
examples. 

Here we see that for some months (Feb, March, Jan, Nov, Dec), this is true. However, the NR values 
are extrema or outside of the reanalysis envelope during the boreal summer.



Example of  AIRS observations channel 295 at 18 UTC 12 July

Real

Simulated

Synthetic Observations

This is for a channel that peaks in the lower troposphere and is thus easily affected by 
clouds. The blank patches in the observing swaths result from QC rejections due to the 
presence of clouds. The simulated and real results should not be identical because, at 
any particular time, the real and NR clouds may be in different locations. The character 
of the plots should be similar however, like the typical sizes of the cloudy patches, 
wherever they may be.  In this example, the counts of obs are almost identical

The most common practice for making synthetic obs for existing data types is to use the 
archived temporal and spatial distribution of observations as a basis for the synthetic 
observations. The observation value itself is interpolated and/or calculated with an 
observation operator from the NR fields, using the time and location of corresponding 
real observations as a base. This works for most data types, but needs to be modified to 
account for factors that are influenced by the atmospheric fields themselves – ie cloud 
contamination of radiance observations, or the spatial and temporal location of AMVs 
(which depend on the NR cloud field), or the advection of raobs/dropsondes by the NR 
wind field as they ascend/descend. 
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Observation Errors

● Synthetic observations contain some intrinsic 
interpolation/operator errors, but less than real 
observations (usually)

● Synthetic errors are created and added to the 
synthetic observations to compensate

● Error is complex and poorly understood
● Error magnitude
● Biases
● Correlated errors

Intrinsic observation errors in the OSSE stem from differences in model resolution between the NR 
and the DAS (and interpolation as previously shown) and due to flaws in the method by which the 
observation is simulated. It is preferred that a different operator is used to generate the observations 
compared to those used to ingest the observations (ie, different radiative transfer code, different 
methods of GPS, etc). Regardless, in practice these intrinsic errors are smaller than the errors 
associated with real observations, at least as far as we can judge.

Synthetic errors can have several components: random uncorrelated errors are the easiest and most 
commonly used type of synthetic error, however the DAS is very skilled at removing random 
uncorrelated errors when ingesting obs. What the DAS cannot easily remove are correlated errors, 
which find their way into the analysis, affecting the analysis increment, analysis skill, and forecast 
skill much more than random errors. These error correlations are very difficult to identify in the real 
world and cannot be disentangled from model error. 

Because OSSEs tend to have insufficient model error, when matching statistics of the DAS behavior 
by manipulating observation error it is entirely possible to end up overcompensating for the lack of 
model error by overinflating the correlated observation errors. This is undesirable but can be difficult 
to identify and avoid.

Biases that we understand are removed by bias correction; biases that we do not understand are 
unknown. If we add the known biases, these will be immediately removed by the bias correction 
procedures of the DAS. The bias correction of the DAS should be adjusted to match the synthetic 
biases as the spinup time for bias correction can be long.



  

 

Calibration

● Adjust synthetic observations and their errors 
to increase realism of the OSSE in a statistical 
sense
● Compare OSSE statistics to statistics using 

real data in the same DAS/forecast system
● Need to decide what statistical metrics to use 

for the calibration, depending on your needs
● Calibrating new observation types?

● Find an analogous data type if possible

Calibration is the process by which we adjust the OSSE to match the real world in the ways that we 
care about most (if possible) and demonstrate how well the results of the OSSE can be trusted. To do 
this, we run a set of forecasts using the desired experimental model with real data for a sufficient time 
period (depends on the statistics you are interested in), and then run a complementary test using the 
synthetic observations. 

Ideally, we would be able to match up all statistics of the DAS and forecast skill between the OSSE 
and the real world, but in practice we can only hope to match up a few. It is important to choose 
beforehand which are the most important metrics that you want to match depending on the goals of 
your OSSE.

Calibration of new observing types is difficult because there is no real world data for comparison. If 
there is a similar observation type, this could be used as the basis of calibration. Otherwise, you may 
wish to test the robustness of your results by repeating experiments with different magnitudes and 
types of errors on the new observations.



  

 

Observation count is easy to calibrate

Observation count – this can be manipulated not just by changing the observation error, but also by 
the characteristics of the observations themselves (thinning, locations, etc). The goal is to match the 
count of observations that survive the quality control process and are ingested by the DAS, which can 
require manipulation of the synthetic observations to model the influence of gross errors.



  

 

O-F is fairly easy to calibrate because you 
can manipulate O directly.

It turns out that F (the background) is relatively stable when manipulating the observation errors. It 
may only take 2-3 iterations of error adjustments on the observations to closely match O-F variances 
between the OSSE and the real world.  This can still be difficult in cases where observation counts 
are low (see upper tropospheric/stratospheric RAOBs above) or where the NR and experimental 
model have differences of opinion about climatology.  Observations near the surface can also be 
difficult to calibrate.



  

 

Some observation correlations are relatively 
easy to calibrate

These channel correlations can be calculated directly for the real satellite channels, and are generally 
well-replicated in the synthetic observations (after adjustment of correlated errors). However, other 
types of correlations, such as horizontal and vertical error correlations can be much more difficult to 
replicate as they are not well-understood in the real world. Not just the magnitude, but the spatial (and 
temporal) character of the error correlations should ideally be reproduced in the OSSE, but it is not 
clear how to accomplish this is practice. 



  

 

A-B (analysis increment) is a little harder to 
calibrate, as A and B are not directly controlled

Real OSSE
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Analysis increments are not directly controlled by observation errors in the way that O-F is. In this 
case, in order to match the A-B, the observation errors would have to be inflated such that O-F no 
longer match. The discrepancy between the OSSE and the real world in this case  is suspected to be 
largely  due to insufficient model error, and possibly in part due to incorrect correlation of 
observation errors: A-B is balanced when cycling exactly by error growth during the 6-hour period 
between cycles. If that error growth is too weak, A-B will also be too small.



  

 

Forecast errors are harder to calibrate, 
especially for longer forecasts. Matching of 
this statistic by manipulation of observations 
is difficult to impossible beyond ~24 hour 
forecasts.

In order to match these forecast skills, the synthetic observations would have to be clobbered by 
observation errors. While the forecast skill might then “match” the real data case, the observation 
impacts would likely be devastated, and the point of performing the OSSE would be lost.



  

 

Model error 
determines 
forecast skill in the 
longer term 
forecast, so 
calibration is not 
possible (unless 
you want to mess 
with your model).

Red: OSSE
Blue: Real

500 hPa anomaly correlations of
geopotential height

The OSSE in this example has significantly higher anomaly correlations than in the real world, even 
out to the day 10 forecast. The OSSE also has fewer dropouts (very low scoring forecasts). Even so, 
this OSSE can still be used for experiments, as long as the too-high skills are accounted for.

“Accounting for”  deficiencies in the OSSE framework is often mentioned but rarely discussed (or 
practiced). At the very minimum, deficiencies should be explicitly described in any published work, 
and in communication with decision-makers who may place weight on results from the OSSE. 

If the OSSE has flaws which can significantly impact the results, it can be difficult to estimate how 
these flaws might actually affect the observation impacts. In the above example, the model error is 
too small, resulting in excessive forecast skill. On the one hand, a new observing system might have 
reduced impact in the OSSE compared to the real world, as the background state is “too good”, so 
there is less “work” to be done by the observations during DAS. On the other hand, any information 
introduced by the new observations may be retained longer into the forecast integration compared to 
the real world, where model error might act to quickly erase the added information. These effects 
depend on the character of the information added by the observation, the dynamics of how this 
information evolves in time, and the nature of model error in the OSSE compared to the real world – 
ie, a very complex and nonlinear interaction. 



  

 

Why believe OSSE results?

New observations can be put into context 
relative to existing observation impacts

Given that calibration cannot fix all the problems with forecast skill, analysis and background quality, 
etc, what can we actually get that is useful from the OSSE? One metric that can frequently yield good 
results is observation impact – whether by data denial experiments or adjoint (above bar graph). 

Observation impacts can be manipulated somewhat by adjusting observation errors – however the 
interplay between observation errors and impact is complex. 

For data denial experiments, increasing the observation errors increases the magnitude of the effect 
the observations have on the analysis state (increasing the analysis increment) up to the point where 
quality control begins to eliminate the observations. In this case, the effect of the observations is not 
judged as to whether it has a positive or negative impact on the analysis state.

In the adjoint, where observations are judged by their impact on the 24 hour forecast skill, increased 
observation errors have complicated effects. If the observation errors are ingested and retained in the 
analysis, these errors may grow and increase the error of the background state of the next analysis 
state, thus allowing the observations to do more work (and have a larger impact) at the next cycle 
time. If the observation errors are increased on all observation types, many of the data types may see 
(good) increases in the adjoint impact. If only one data type has increased errors, however, the impact 
of that data type may be reduced while the impact of other data types increases to compensate for the 
greater error of the background.

In general, adjoint impacts in OSSEs may be smaller for all observing types than for real data, due to 
the too-skillful background state from insufficient model error. However, the relative impact of 
different data types is well-reproduced, so a new observing type can be put into context with the 
current observing systems.   



  

 

Criticisms of OSSEs

● Results only apply within the OSSE system – 
no concrete connection to the real world

● Even the best OSSEs are far from perfect: 
incestuousness, difficulty in generating 
observations and errors, deficiencies of the 
Nature Run

● By the time the new instrument is deployed, 
both the global observing network and the 
forecast models/DAS will be different

● Examples of sloppy or unsuccessful OSSEs

These are all true! We need to recognize the limitations of the OSSE results. There are however, few 
alternatives and we should not let the perfect be the enemy of the good.

Take care when reading the literature. Did the investigators validate their NR? Did they calibrate their 
OSSE? Was the new observing type tested in an honest comparison against the full suite (or a 
reasonable suite) of existing observation types? Were the results cherry-picked from a case study or 
tested more robustly?



  

 

Common Pitfalls

● Very reduced baseline of assimilated 
observational data (ex. no radiance data)

● Other artificial degradation of analysis state
● No validation or calibration of OSSE 

framework
● Obtaining robust results from case studies is 

very challenging

– Use ensemble forecasts if you can!

Because of the expense of generating synthetic observations, one shortcut is to omit the more difficult 
(usually radiance) observations from the synthetic obs dataset. This is especially common in regional 
OSSE studies. The problem is that conventional observations can be quite sparse, and the comparison 
is neither fair nor realistic when judging a new observation type. If you just want to make sure a new 
data type is functioning properly, then this type of limited study can be successful, but it is not 
appropriate when trying to estimate the potential impact of a new observation in operational context.

When a full-blown OSSE is not performed – ie, analyses are used instead of a NR or resources are 
otherwise limited, the investigator can have a problem of how to make a background  starting point 
for the DAS which is different from the truth. Sometimes the investigators will chose to damage the 
analysis state in some way to make a new background state. This is undesirable, as the background 
state is influenced by the entire observational suite, including the new observations, so the “work” 
done by the observations becomes completely artificial and dependent on how the background was 
degraded rather than an honest test of the observation impact.

Unvalidated/uncalibrated systems yield results which cannot be trusted or put into context in reality. 
What do you learn in this situation?

Sometimes case studies are the only option available. Interpreting the results can be very challenging 
– the use of an ensemble of forecasts can be much more robust than a single deterministic forecast.



  

 

Choosing Metrics

● Long cycling periods necessary to get 
statistically significant results for most new 
observations

● Anomaly correlation is a difficult metric to 
show appreciable impacts

● What fields do you expect the instrument to 
improve?

● Largest impacts found at analysis time or 
short-term forecasts

Most new added data types will have only a tiny impact on forecast skill, so if you want statistically 
significant results, you will need to run tests over a lengthy period to gather enough data. One 
strength is the use of paired statistics, which can make it easier to show significance with a smaller 
dataset (see, for example, Wilks' “Statistical Methods in the Atmospheric Sciences”).

Some metrics are especially hard to move – anomaly correlation is one of them. Instrument teams and 
administration also have a hard time with anomaly correlation as a concept (and as “great news – 
your instrument increased 5-day anomaly correlations by 0.01!!”). Instead, consider other metrics that 
more directly reflect the impact you expect from the new instrument.



  

 

Idealized Studies

● Identical twin experiments
● Idealized observations
● Manipulation of observation errors
● Experiments with B, R

● Make use of available “Truth”

OSSEs can also be used as a platform for experimenting directly with DAS processes and behavior. 
You know the true state of the atmosphere, have direct control over the observations, a large degree 
of control over the observation errors, and can manipulate the observations and characteristics of the 
DAS. At the same time, the system is much more complex than a simple toy model.



  

 

Regional OSSEs

● Regional OSSEs are harder than global 
OSSEs

– Two Nature Runs (local embedded in global)

– Two forecast models each using synthetic 
obs

– Shortcuts are very often taken – need to 
carefully examine the methods to ascertain if 
the results are trustworthy

Embedding a regional NR inside of a global NR is hard, especially if you want the behavior in the 
regional NR to match the large scale behavior in the same region of the global NR. See recent work at 
HRD (Nolan et al 2013,  J. Adv. Earth. Model. Syst) for an example of a true regional NR.

In practice, regional OSSEs often use a forecast or analysis from a global model (such as the GFS or 
ECMWF) and use that BOTH for the global NR and for the global forecast model (ie for the 
boundary conditions fed to the regional forecast experiment model and the regional NR). Care should 
be taken that the influence of the boundary conditions does not override the influence of the initial 
conditions/obs impact in the region model during the forecast experiment. For new observing systems 
that would act on a wide area, this particularly neglects the influence of the new obs on the global 
model then improving the boundary conditions of the regional forecast model and thus the entire  
field.

  



  

 

Takeaway

● OSSEs can provide useful information about 
new observational types and the workings of 
data assimilation systems

● Careful consideration of research goals should 
guide each step of the OSSE process

● OSSEs are hard, good OSSEs are harder
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