A Brief
(hopefully entertaining)
Historical Introduction to
Estimation Theory with Eyes on
Weather Prediction

Ricardo Todling
NASA Global Modeling and Assimilation Office

The JCSDA Summer Colloquium on Satellite Data Assimilation
Ft. Collins, CO, 27 July to 7 August 2015

First Presented to the Participants of the 2013
UMD Summer School on Data Assimilation during their visit to NASA

Warning: This is by no means an exhaustive introduction to the subject.



Estimating the Weather

84-hr Fest for Today s 12 UTC 1 Nov 1871: First weather map, issued by

e ~U.S. Army Signal Service (showing isobars; *)
3—hr Accum Pre<:|p [mm] SLP [mb] ond 1000—500mb Th'Ckness [dom] i . : =

84—hr Forecast Valid Monday 27 July 2015 12UTC
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of estimation for NWP.

(*) source: WWW.shorstmeyer.com/msj/geol65/met_hist.pdfr - Steve Horstmeyer



“We know today, mainly due to the work of J. Charney, that we
can predict by calculation the weather over an area like that of
the United States for a duration like 24 hours [. . .]. We know
that this gives results which are, by and large, as good as what
an experienced ‘subjective’ forecaster can achieve, and this is
very respectable.”

John von Neumann, 1954.



Data Assimilation or ... ?

* |nverse Problems

* Stochastic Estimation

* Distributed Parameter Estimation
 Lumped Parameter Estimation

* Optimal Filtering and Smoothing
* Bayesian Estimation

* Least Squares Estimation

* Absolute Averaging

Minimization
When did ideas on estimation emerge? Uncber:)alintv
Probability

My main sources: Hacking, Franklin, Lanczos, McGee & Schmidt and sprinkles from many others.
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Hero of Alexandria
B.c 10 AD

Hero showed that the path taken by a
light ray going from an object to a mirror

and from the mirror to an observer, is the shortest of any path going from the object
to the eye of the observer via the mirror. He derived the law of reflection.

Sphere of the
Prime Mo '2*

Hero’s thinking was consistent with
that of Aristotle, who thought

that planets moved in circles
because they were the shortest
closed path an object could trace
when going around another.

Aristotle
384-322 BC

Combined with the maximum speed of motion, Hero’s , - ;
s . Aristotle's Universe
thinking leads to the concept of the shortest time traveled. Modified from starchild gsfc.nasa.gov



Pierre de Fermat

]
. 1 .
e1600-1655 sin 6; Ny V; = refraction

S|n 07" - nz Vr
Fermat derived the law of refraction by
using Hero’s principle of shortest time traveled.

A similar problem of interest was that of the brachistochrone
— the curve of quickest descent — proposed by Johann :
Bernoulli, and solved by Newton, Jakob Bernoulli (brother), ‘
Leibniz, Tschirnhaus, and I'Hopital. Jakob B.’s solution was
based on Fermat’s least time traveled.
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Ibn Sahl manuscript of 984,
Simulation from describing the law of refraction
http://curvebank.calstatela.edu/brach/brach.htm six centuries before Snell-Descartes




The Principle of Least Action .=

Leibniz argued that the principles of nature could
be expressed in the terms of minimum principles.
This went along with his vision that we live in the
‘best of all possible worlds’.

B But it was Maupertuis who explained the impact
Plerre-Louts de Maupertuis of bodies by assuming the product mvs to be a
minimum following D’Alembert’s principle. The
guantities mvs was named action. He showed how Fermat’s principle
of least time can be replaced by the principle of least action.

Euler generalized Maupertuis principle into an integral theorem applicable to
motion of particles subjected to a conservative force. The action principle
was recognized to be a principle of extremum.

Lagrange extended Euler’s principle introducing the feature of invariance with
respect to arbitrary change of coordinates, and developed along the way the
calculus of variations. He set the foundations of analytic mechanics.

Hamilton transformed the second order differential equations of Lagrange into
a more desirable set of first order differential equations with double the number
of variables — called “canonical form” — prompting a new world of discoveries.



Uncertainty



Accounting for Uncertainty ..,

Another contribution from Galileo

Tycho Brahe refuted the Aristolelian belief in the unchanged
% sphere of the fixed start (beyond the Moon), but controversy
remained.
g =
¥ A In 1621 Scipione Chiaramonti published results from a comparative
study examining observations of star elevation made by 13

astronomers. He looked at 12 pairs of observations and concluded

. | e the estimated distances from each measurement to be less than
onstellation of Cassiopeia . . . .

showing Tycho Brahe’s nova the distance of the moon. Being fan Aristotelian, he wanted to

of 1572. show the heavens to be unchanging.

Galileo points out that of the 65 possible pairs Chiaramonti chose only those supporting
his belief. Galileo re-evaluates the matter by realizing that observations are:

(i) “equally prone to err in one direction and the other”; and that

(ii) carefully taken measurements are “more likely to err little than much”

Galileo’s solution is to choose the position that makes the sum of the corrections least.

Galileo was then able to show that indeed, Tycho Brahe was right in saying the nova had
appeared in the unchanging sphere of the stars!



The Principle of Least Constraint & = sseson
The Least Squares Method

Gauss: from extremum to minimum

Up to about the time of Gauss all principles of action led to an
extremum solution, not necessarily a minimum. Starting from
D’Alembert’s principle of equilibrium of forces acting on a system

N
Z (fz — miai)TcSri =0
1=1

Gauss showed it to be equivalent to the principle of least

Johann Carl Friedrich G constraint N 4
ohann Carl Friedrich Gauss . - \2
1777-1855 52, Qm.(fz —mga;)” =0
i=1 v

which has the advantage of its stationary solution being automatically a minimum —
essentially because m, > 0.

Though this does provide a more complicated solution to the problem requiring evaluation
of the accelerations Gauss was particularly married to this principle since it directly related
to his formulation of the least squares method. Here, the external forces could be thought
as observations, the force of inertia as the true forces, and the mass could be interpreted
as weights given accounting for different quality of the measurements.



Ceres from Hubble. Today ~ concepts fundamental to our story:

known as a planetoid in

The Least Squares Method ..

Laplace and Gauss: orbit of celestial objects from observations

The desire to determine present and future position of celestial
bodies has been with us since we first wondered about the heavens.
The Babylonians and Greeks kept extensive observations of the skies.
Galileo, Kepler, and Newton made known breakthroughs in using
observations and to explain the skies. Laplace, Lagrange and others
provide us with profound insights in methods to determine the path
of comets from observations. Laplace, in particular, introduced

the asteroid belt. (a) the algebraic sum of residuals should vanish, and
Photo from jpl.nasa.gov (b) the sum of the absolute values of the residuals should be a

minimum [recall our story on Galileo a few slides back].

By the late 1700s, early 1800s, the race was on to predict the reappearance of Ceres, a

planet discovered between Mars and Jupiter. On November 1801, L0

0.91

Gauss predicted the planet’s future path. His results were confirmed %%} \

0.7

on January 1, 1802 by Franz Zach and Heinrich Olbers at two different 3%

observatories in Germany. s
0.27
0.11

< x < observations
— LS fit

Gauss solution combines Newton’s iterative method to solve 0.9

nonlinear egs, with his own development of the Least Squares Method.
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Probability



The Concepts of Probability Become  ssior

&

Mathematical Frankin (2001
From India to Pascal and Fermat

Though concepts of probability only started to mature after the
mathematical forms more familiar to us, the story of Nala, told

in the Indian Sunskrit epic Mahabharata, who possessed by a rival
demigod loses his empire to gambling. Only after coming across
Rturpana and learning the science of estimation is Nala able to
regain his empire and his beloved Damayanti in a game.

Nala meets his beloved In the words of lan Hacking “*That is evidence that in India, long

Damayanti who's chosen him ago, it was recognized that there was a genuine science to master ...
over the Gods. c A.D. 400; From go, g9 g

http://en.wikipedia.org/wiki/Nala

Basic concepts of averaging go as far back as the Greeks. Hipparchus, about 150 BCE, was
able to develop geometric models to fit the vast Babylonian observations of the stars. His
eccentric circles with epicycles are made to fit the observations in a method close to what
we call regression. But the link between averaging and probability didn’t come until later.

)

Formal understanding of the concept of averaging (expectation) is relatively new, dating from
the 1650’s and the correspondences between Fermat and Pascal. Our present-day concept
of probability dates back from that period. Thoughts and needs in various areas from law,
gambling, economics, agriculture, and theology all combined to form what we know today.



The Concepts of Probability Become s

Hacking (1975)
Mathematical
Becoming Bayesian

In "When Did Bayesian Inference Become
“Bayesian”?”’, Stephen Fienberg traces the roots
of our present-day referencing to Thomas Bayes
approach to probability problems.

: ?'\, Fo
Rev. Thomas Bayes
c1701-1761

What does it mean to be Bayesian’’? It means we believe’” we can use the outcome of past
events to infer the chances of a certain outcome in the next trail.

_ P(A|B;)P(B;)
P(B;|A) = >, P(A|B;)P(B;)

Actually due to Laplace (1774)

Laplace played a fundamental role in solidifying concepts in probability, but it wasn’t until
early in the 1900s that Bayes thinking gained momentum, and eventually influenced a huge
body of work: Fisher, Neyman, Pearson, Carnap, Kolmogorov, Turing, Keynes, & others.

For us, our main interest in Bayesian probability is that it essentially provides the proper link
among various formulations of the estimation problem.



LP Norms in Estimation

— 1)
have chosen the requirement that the o
absolute-value of the residual error be ¢
minimal when trying to come up with

the estimates they sought.

We have seen that Galileo and Laplace , |x;
min Z

7

We have also seen that Gauss added
an alternative requiring the square of
the residual error to be a minimum.

We can show that least-squares is intimately related to
Gaussian probability distribution.

. (@ — pi)?
main Z 0-2
7

32
When a traveler reaches a fork in the road, the L1-norm p a exp [— > (@i QUgZ) ]
tells him to take either one way or the other, the [2-norm ‘ ‘

instructs him fo head off info the bushes.
J. G. Clearbout & F. Muir, (1973); quoted in Tarantola (2005)
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More generally, there is a class of problems based on llp = ~ o,

LP norms with associated probability distributions )

that are better than the familiar L2 norm (Gaussian) l|z||lcoc = max (—z>
(4 O'Z

to handle certain types of situations, e.g., outliers.

e.g., Tarantola (2005)



The Kalman Filter: Problem

A A New Approach to Linear Filtering
The message is a random process x(¢) generated by the model and Prediction Problems'

R. E. KALMAN

Research Institute for Advanced Study,2 The classical filtering and prediction problem is re-examined using the Bode-

dx / (It P F( t) X + G( t )u( l) Battimore, Md. N Shannon represeniation of random processes and the “state transition” method of
analysis of dynamic systems. New results are:

1 9 6 O (1) The formulation and methods of solution of the problem apply without modifica-
~ l - tion to stationary and nonstationary statistics and to growing-memory and infinite-

The observed signal is ey
(2)' A nonlinear difference (or differential) equation is derived for the covariance
matrix of the optimal estimation error. From the solution of this equation the co-
efficients of the difference (or differential) equation of the optimal linear filter are ob-

= — H tained without further calculations.
l( t) Y( t ) I V( t ) ( t ) x( l ) I V( t ) (3) The filtering problem is shown to be the dual of the noise-free regulator problem.

The new method developed here is applied to two well-known problems, confirming
and extending earlier results.
The discussion is largely self-contained and proceeds from first principles; basic

The functions u(z), v(¢) in (10-11) are independent random white noise conceps ofthe heoryaf o processes are restewed 1 Appendis
with identically zero means and covariance matrices

cov [u(t), u(T)] = Q)-8(t — 7)

R(&)-8(t — 7) forall ¢ 7 New Results in Linear Filtering and
0 Prediction Theory
. . R. E. KALMAN A nonlinear differential equalion of the Riccati type is derived for the covariance
OPTIMAL ESTIMATION PROBLEM. Given known values vt e e ot S T sk of e s st con,
. . . . A gt R . ” .
of z(7) in the time-interval t, = 7 = {, find an estimale x(t1|t) OF oo T | ot ks bty it Ml i i
Laboratory, Silver Spring, Marylan: The significance of the variance equation is illustrated by examples which duplicate,
x(tl) Of the for]n, J"”T[;,:!yuﬁzfi’f;”;l’éﬁ;;:’%ﬁi;; ‘s';;cﬁgu estimation and_deterministic control

problems plays an important role in the proof of theoretical results. In several examples,
the estimation problem and its dual are discussed side-by-side.
Properties of the variance cquation are of great interest in the theory of adaptive

A ‘ systems.  Some aspects of this are considered briefly.
x(Llt) = j: : Al 7)(7)dr (14)

cov [v(t), v(7)]

cov [u(?), v(7)]

stationary or nonslationary slatistics.

(where A is an n X p malriz whose elements are conlinuously
differentiable in both arguments) with the properly that the expected
squared error in eslimating any linear funclion of the message s
minimized:

Elx* x(t) — f((t;lt)]2 = minimum for all x* (15)

Remarks. (a) Obviously this problem includes as a special
case the more common one in which it is desired to minimize

8")(([1) = ﬁ(hll)“’

Excerpts from Kalman & Bucy (1961) original work



(1) Canonical form of the optimal filter. The optimal estimate
i(tlt) is generated by a linear dynamical system of the form

ax(t|t)/dt = F(e)x(t|e) + K()z(t|e)

Z(t)t)

(2) Canonical }oﬁn fc;r the dynamical system governing the

oplimal error.

dx(tlt)/dt = F(t)x(dft) + G(u(t) — K(O)[v(t) + H)x(o) (IT)

(3) Optimal gain.

K(t) = P@)H'(1)R~(¢)

(4) Variance equation.

dP/dt = F(t)P + PF'(t) — PH'(O)R-Y()H(P + G)QWG(t) (IV) | -

- v(t)

2(t) — H()R(tt)

(III)

u(t) ——) a(t)
- MODEL OF MESSAGE PROCESS
4 — %t
K(t) :)(Z H = we)
| rt)
e e e e — —
[ 1]

Fig. 10 General block diagram of optimal estimation error

Excerpts from Kalman & Bucy (1961) original work

(7) Analytic solution of the variance equalion. Because of the
close relationship between the Riccati equation and the calculus
of variations, a closed-form solution of sorts is available for (IV).
The easiest way of obtaining it is as follows [17]:

Introduce the quadratic Hamillonian function

3C(x, w, t) = —(’/z)HG’(t)xll’Q(;)
— wF'()x + (1/2)|[H(t)w|R-1¢)  (26)

and consider the associated canonical differential equations
dx/dt = d3C/ows = —F/(t)x + H'(R-(H()w }

27
dw/dt = —d3C/dx = G(¢)Q(¢)G'(¢)x + F(t)w e

meteorology (e.g., Talagrand & Courtier, 1987).

Some open problems, which we intend to treat in the near
future, are:

(i) Extension of the theory to include nonwhite noise. As
mentioned in Section 2, this problem is already solved in the dis-
crete-time case [11], and the ouly remaining difficulty is to get a
convenient canonical form in the continuous-time case.

(ii) General study of the variance equations using Lyapunov
functions.

(iii) Relations with the calculus of variations and information
theory.
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Two Real-Life Applications

The Apollo Missions
Predicting the Weather



Digression ...

The Apollo Missions

The First Real-Life Application of the KF



Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry

In 1985 McGee & Schmidt published a NASA Tech Memo telling the story of how
“the Kalman filter first application was made at NASA Ames during feasibility
studies for circumlunar navigation and control of the Apollo space capsule”.

The article describes how: McGee & Schmidt (1985)

- The need for something like the Kalman filter arose
- Extensions required to Kalman’s work for use in real-life problems
- Various stability tricks were designed and employed
- The need for a stable reformulation leading to the square-root KF ¢reumiunar mission
- Various efficient formulations derived to fit the computing
real-time-application constraints
NASé WQE'd)!ViQ'?}fiC'il"g nvgt\‘(yqfkm‘(c.wgl965)

e
: ' s
v Y ’

o , pir g I R & B S From Schmidt & McLean (1962)
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TINJECTION
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—eermseiineme 0 (30Y) Aftetia

From F. O. Vonbun, (1966) Source http://history.nasa.gov/SP-4002/p2b.htm



Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry

McGee & Schmidt (1985)
Support for the Apollo Mission (from mid-1962 to mid-1964)
Three areas of study were the focus:

(1) effect of modeling errors and suboptimal space vehicle trajectory.
(2) effect of short-word length in the airborne computers.

(3) effect of combining ground-base and on-board observational data.

The first stability issues with the Kalman-Schmidt filter were encountered while studying (3).
Earlier investigations apparently involved systems that were less sensitive to nonlinearities.

Part of the stability issue was attributed to computer round-off problems. Initial attempts
to address the issue involved (the now familiar) forcing P to be symmetric by:

(a) using only its upper (or lower) triangle to form a symmetric matrix.
(b) averaging its off-diagonal terms.

(c) applying (b), then computing correlations coeffs, if any > 1, stop.

(d) adding a small number to the diagonal of P after measurement and time update steps.
About this time is when Joseph’s update formula came into play.
During this research they learned:

(1) how to handle uncertainties and biases

(2) when the error cov P is too-optimistic it mis-represents errors, leading to filter divergence
(3) ground-base radar obs were more effective, with onboard corrections only used as backup



Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry

Back in the days ... - Comput.er programs were “typed” in punch cards
- Debugging was tough!

o - Onthe IBM 704 (at Ames) matrix double indexing
was slow; programs had to be rewritten with single
indexing.

- IBM 704: 36-bit arithmetic; Apollo onboard: 15-bit

Initial Kalman filter studies used
IBM 704 Data Processing System

Source http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH704.html

Apollo 11 Mission Control
IBM’s Real-Time Computer

Complex at NASA, Houston

Source http://www-03.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV4002.html
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http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/apollo/breakthroughs/



Discovery of the Kalman Filter as a Practical Tool for

Aerospace and Industry

Application of The Filter to the Agena Program (c. 1961)

1. ATLAS-AGENA B LAUNCHED

s  CONTROL CENTER—

2. DETERMINE ORBIT OF AGENA B

—— "8 COMPUTING
4. RENDEZYOUS DOCKING

A, s AGENA B |
| smecanr

Sourée http://history.nasa.gov/SP-4002/p1b.htfn

Gemini Docking

Purpose: validate the Agena upper stage rendezvous and

docking during Project Gemini.

Observations: downrange stations & in-flight telemetry.

Model: equations of motion of the vehicle predicting

position and velocity.

Estimator: measurement biases, location, coefficients of
propulsion model for the thrust of Agena upper
stage.

Resulting techniques following from study:

- Quality control: data-rejected based on size of residual.

- KF used as data compression algorithm.

- Effect of nonlinearities handled with backward integration
and forward filtering.

- KF used to estimate parameters in measurement and model.

McGee & Schmidt (1985)



Discovery of the Kalman Filter as a Practical Tool for

Aerospace and Industry
The square-root filter

Schmidt and his group continued to applied the extended KF to various navigation problems:
(a) the development of the C-5A aircraft navigation system

(b) flight test of the RAINPAL system for approach and landing

Still having stability issues Schmidt, knowing about the recently developed algorithm by Potter,
implemented the first square-root filtering for real on-board aircraft applications. Potter’s
procedure uses a Cholesky factorization of the error covariance matrix, which by construction
maintains positiveness, and results in a more stable implementation then the more direct
Extended KF..

The group of Eldon Hall implemented Potter’s algorithm in the Apollo Guidance Computer.

Potter’s original algorithm neglects model error. Various generalizations become available in
the late 60s and during the 70s that by then took into account factorizations the model error
covariance —amount the great contributors where Carlson, Bierman, & Thornton. The most
reliable and computationally efficient schemes are based on a U-D decomposition of the
error covariance and a modified Gram-Schmidt orthogonalization.

McGee & Schmidt (1985)



Predicting the Weather

From First Principles to the KF for NWP
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The Stockholm period 1947-1957

By BERT BOLIN, Department of Meteorology, Arrhenius Laboratory, University of Stockholm, S-10691,
Stockholm, Sweden

(Manuscript received 17 August 1998; in final form 28 September 1998)

A R Fhad Mech (RA X630 zon
Copyrighe (£) 1867 by Anmact Reviws Jac. AX nghs soserwd

LEWIS FRY RICHARDSON
AND HIS CONTRIBUTIONS TO

MATHEMATICS, METEOROLOGY,

AND MODELS OF CONFLICT

J.CR. Hunt
Ussiversity of Camlwidge, Dep of Applied Math ics smd Th

iy, Silver Sweet, Camlwidge CB3 96EW, United Kingdomn
Tellus (1991), 43AB, 36-52 Physics, Siver =

The birth of numerical weather prediction

By A. WIIN-NIELSEN, Geophysical Institute, University of Copenhagen, Haraldsgade 6,
DK-2200 Copenhagen N, Denmark

(Manuscript received 15 June 1990; in final form 2 October 1990)

ABSTRACT

The paper describes the major events leading gradually to operational, numerical, short-range
predictions for the large-scale atmospheric flow. The theoretical foundation starting with
Rossby’s studies of the linearized, barotropic equation and ending a decade and a half later with
the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is
described. The problems connected with the very long waves and the inconsistences of the
geostrophic approximation which were major obstacles in the first experimental forecasts are
discussed. The resulting changes to divergent barotropic and baroclinic models and to the use
of the balance equation are described. After the discussion of the theoretical foundation, the
paper describes the major developments leading to the Meteorology Project at the Institute for
Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the
establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The inter-
connected developments in Europe, taking place more-or-less at the same time, are described by
concentrating on the activities in Stockholm where the barotropic model was used in many
experiments leading also to operational forecasts. The further developments resulting in the use
of the primitive equations and the formulation of medium-range forecasting models are not
included in the paper.

Meteorology & Weather Forecasting

There is a number of articles that
tell the history of meteorology,
weather forecasting, & of those
who pioneered the field.

Mathematics Today, 1978, L. A. Steen, Ed.127-152

The Mathematics of
Meteorology

Philip Duncan Thompson

A
Inits modemn scnse, logy is the sci that deals with the structure
and behavior of the here or, more precisely, that part of the gaseous

lope that ds up ﬁmnthewﬂ:ssnrfwemanalumdeorahml
100 h’lomclas. The latter limit is rather arbitrary, but w-responds roughly
to the altitude below which el agnetic forces and photoch | reac-
tions are presumed to be relatively ummpon:m. and whose effects are
therefore assumed to have littie influence in the course of events in the un-
dcﬂymg utmosphen The name was evidently taken from the first “scientif-
c" her, the Meteorologica, written by Aristotle in the fourth
century B.C. AllhoughAnmﬂe‘;caﬂy work was concerned with a wider va-
riety of subjects (incloding Ihc quahuhve descnpuon of various astronoms-
cal, hic, and geologi ), it ap l[kely lha meteo-
rology™ is derived from ‘the Greek word * -~
that falls from the sky"—rain, snow, hul or hard- rock meteors.

Although Aristotle dubbed gy a sci it would be difficult to
describe his studies as “hard science” today. To quote one example, Ans-
totle says (through his protege, Theophrastus):

We must now show that each wind is accompanied by forces and othet
conditions in due and fixed relation to itself; and that such conditions
fact differentiate the winds from one anotber.

There are, of course, a few grains of sense in this statement: some of the
great persi: ] and regional wind patterns are clearly governed by
afew simple and domi physical p But to suppose that the pecu-
liarities of Aristotle’s “eight winds” are determined by totally different and
distinet causes is virtually a denial of the universality of physical law.
Theophrastus says further: * .. . the Etesian Wind (monsoon). . . is caused




Why did it take so long for meteorology
to become a science?

Meteorology & Weather Forecasting

Hydrodynamioal Equations

For those who have been initiated into some of the mysteries of fluxd
mechanics, we summarize here the mathematical theory of fluids ax it
stood in the age of Newton, Euler, and Bernoulili. It can be com-
pressed into four equations, expressing the three component.s_of ac-
celeration in terms of the forces per unit mass, and the condition for
conservation of mass:

ou du . Ou . 04 1
a+na‘+v7y-+waz f°+pax 0,

av du

+u—=+ g &0

li:
D—+Wﬁ+f"+pay o'_
ow
v—

+w—az

ay oz

9 8 A
i ax(pn) + ay
Here » and vare the components of fluid velocity in two horizontal and
mutually perpendicular coordinate directions (x and y) and w is the

nt of velocity in the vertical or z-direction. The local mass
density of fid is p, and p is the ambient pressure. The so-called
Coriolis parameter f takes into account the carth’s rotation, and g is the
gravitational acceleration.

o Tax
aw aw 1ap _
W by = e = ),
a'4-0:&'4- +g p 32

(pv) + 'a%(pw) =0.

The Boyle—Charles Law

Under the assumption that the thermodynamic variables p, p, and 7
are connected by a single relationship, Boyle's Law may be written as
p = pAiT) and Charles's Law as p » Tg{p) in which T is the absolute
temperature, the quantity f{7) depends only on 7, and g(p) depends
only on p. Equating these two independent expressions for p, we get

AD _ g(p)
T p’

But the Jeft-hand side of this cquation depends only on T, whereas the
right-hand side depends only ¢n p. TEis is possible if and only if both
sides are equal to a constant that is independent of p, p, and 7. In other
words, f{T)/T = R = corstant, This implhes that

p= RpT.

This is the Boyle-Charles Law, the equation of state for an ideal gas.
The gas constant R is related 1o Avogadro's number.

Flest Law of Thermodynamics
In mathematical symbolism, the First Law of Thermodynamics 15

expressed as:
- r(l

where %/, is the rate of iieat addition to a unit mass of flud {such as
air), C, is the specific heat at constant volume, and the symbol ¥/,
stands for the time rate of change experienced by a material element of
fluid, following its motion, The remaining quantities p and p are, as
defined in the box on p. 131, the fluid density and ambient pressure.
The equation expressing the First Law explicitly involves only vari-
ables appeanng in the five equations listed in previous boxes, i.e., the
three Newtonian equations of moticn, the equation for conservation
of mass, and the Boyle—Charles cquation of state, Thus, with an in-
dependent equatioa that introduces no new unknown variables, the
system of hydrodynamical equations becomes formally complete.

Note: thought the system of equations becomes formally complete with six equations, for it to describe a meaningful
atmosphere, it also needs a seventh eq. provided by the Second Law of Thermodynamics — leading to inclusion of

water-vapor.
From Thompson; in Mathematics Today 1978



Vilhelm Bjerknes
From www.uib.no

Meteorology & Weather Forecasting

atmosphere at the initial time.

“If it is true, as every scientist believes, that atmospheric states
develop from the preceding ones according to physical laws,

then it is apparent that the necessary and sufficient conditions

for the rational solution of forecasting problems are the following:

1. A sufficiently accurate knowledge of the state of the

2. A sufficiently accurate knowledge of the laws according to

which one state of the atmosphere develops from another.”

| ' due to the information gained. But that is a dream.”

Bjerknes (1904, Meteor. Zeitschrift)

“Perhaps some day in the dim future it will be possible
to advance the computations faster than the weather

Lewis Fry Richardson, 1922.

R
— ) 7@d}' advances and at a cost less than the saving to mankind
s:’..‘lfa"‘/
Bl ==
\\_—1 5
Vit | Lameny | Lo
Richarson’s checkerboard grid
e Ku\'\“’::s with p and wind staggered at

shaded and clear boxes.

Lewis F. Richardson
From www.wmo.int



Objective Analysis and
The Variational Principle (c. 1950s)

The objective analysis amounts
to a third-order polynomial fit

p(xr y) = Z ai.ixiyj! (7’ + J = 3)
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K I Many contributed to objective
Subjective (left) and two objective analyses of 700 mb height at 1500 GCT Analvsis: Cressman. Charne
on 25 March 1947; From Panofsky (1949). ysis: ’ 14

Platzman, Smagorinsky, others.
It was quickly realized that simple objective analysis techniques would Vet §
have to be made consistent with the physical constrains underlying the

meteorological variables. Sasaki proposed using the variational principle
to accomplish consistency.

— 2 * —
I= SVS dzdydp 01=0 Yoshikazu (“Yoshi”) Sasaki
Governing QG and Deviations from Corresponding The total quadratic error
thermal wind egs.: observations: error equations:  in the integrand:
’ , 1 0¢ 1 0¢y

u:____.lfg_;/b’ Uz—;lgg—i U =u—Uty u ='—‘7_a(§——u0—7% 625wlzu/2+a12v/2+w22¢/2+w32T/2

vV =0v—0 ,_10¢ | 10¢ . .ep . .
R o = b—oy "=y% ""7a  Remaining difficulties recognized:

T'=T—T, T/=§—Z;— TO+% * Extrapolation beyond area

of available data.
From Sasaki (1958) e Specification of weights



Discovery of the Kalman Filter as a Practical Tool for
Numerical Weather Prediction

The earliest mention of the Kalman filter as a possible approach to initialize NWP models is
found in a publication in the Journal of Atmospheric Sciences, by Richard H. Jones, in 1965.

Computational complexity kept most from looking into the KF for real-time NWP applications.

It wasn’t until the early 1980s that M. Ghil, S. E. Cohn, & D. P. Dee started looking at the
problem and studying the KF properties for hyperbolic PDEs (associated with NWP).

Though works on KF for NWP started appearing more often, it wasn’t until 1994 with Geir
Evensen’s ensemble Kalman filter that the feasibility of using the filter for real-time
weather applications started sinking in.

Since then, the literature on Kalman filtering related to NWP (and other Earth Sciences
applications) has exploded. Many weather centers now have some version of an
ensemble-based data assimilation procedure implemented; some of these being EnKF’s.

Most interestingly, many of the EnKF’s fit under the banner of Square-Root Kalman Filters.
So, in some sense, it seems we have come all the way around to conclude (for somewhat
slightly different reasons), that Square-Root filters are better suited for practical applications.



The NASA GMAO Variational-Ensemble Hybrid
Data Assimilation System

NASA/GMAO — GEOS Central Analysis and 32—Member Ensemble Analysis
Central: Precip [mm], SLP [mb] (black); Ens Mean SLP [mb] (red)
/ I} i : S il : = — N 2

R

Analysis and Ensemble Analysis on Sunday 2:00 AM EDT 2014—-05—-18



Closing Remarks

In the process of preparing this presentation | came across an article not too dissimilar

from that of McGee & Schmidt (1985). This is the article of Grewal & Andrews (2010) which
also provides a nice review of the use of Kalman filtering in Aerospace. It seems unfortunate,
though, these authors are not aware of the earlier review of McGee & Schmidt.

In our Earth Science applications, the square-root filter formulation has become rather
important as it is behind the ensemble-based formulations for the filtering (and smoothing)
problem(s).

Just in our field of interest, the amount of literature on filtering and smoothing has explored.
it is becoming very difficult to know all available variations of possible twists to the solution
equations. But it seems that those who’ve made the larger strides in progress in our field have
given special attention not only to the assimilation strategy, but also to how to treat the
observations being assimilation:

(a) removal of biases

(b) specification of underlying error statistics
(c) treatment of balance
(d) and a host of other details

have all been fundamental to progress in Estimation Techniques for Earth Sciences.
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Main Objective

The main objective of this lecture is to present a sum-
mary of some of the methods most commonly used for
state estimation.

What I hope to convey to you:

> The allows for the proper descrip-
tion of most (if not all) methods currently employed in
data assimilation.

> In practice, most methods used in atmospheric and oceanic
data assimilation boil down to slightly different versions
of

> Good understanding of the example of “estimation of a
constant vector” provides a solid basis for understanding
many of the methods currently used.

> Much attention should be given to details:
e Off-line and on-line quality control
e removal of both model and observation biases

e proper use of observations; they should be used at
right time and be given proper error characteristics

e fields should be properly initialized

e careful consideration of tangent linear and adjoint
models issues

>  Remember ...



Bayesian Approach to Estimation

Central to probabilistic estimation is the concept of a
joint probability distribution (pdf) of two processes x
and y, and denoted pxy(X,y).

Also, fundamental to Bayesian estimation is the defini-
tion of conditional probability distribution functions:
pxy(XaY)

py(Y)
and Bayes rule for converting between conditional pdf's:

px|y(x|y) —

py|x(Y|X)pX(X)
py(y)

px|y(X|Y) —

The m-th conditional moment is defined as:
£{x™y} = / X pry (xX]y)

with the first moment, the mean, p,, = E{x|y}.

A typical conditional pdf is that of a normally distributed
random variable x conditioned on y

1 _
Py (xly) = exp [——(x )P G — i)

1
(2m)"/2[P |12 2

which is a n-dimensional Gaussian function.



Bayesian Approach to Estimation

In the Bayesian approach to estimation we define a func- )
tion expressing our confidence in the estimate. This A Few Examples of Cost Functions

function is referred to as the (or risk, or fit) func-
tion and it takes the general form: (a) The quadratic cost:
N N 1 1 .
JEx) = &Jx-3)} J = 2‘|x—)“(||12.;: 2(x—fc)1E(x—f<)

= / J(x — X) px(x) dx
B (b) The absolute-value cost:

— / / J(X — %) pry (%, ) dy dx .

. 1 .
J= llx—%le= J|[Ex-%)]
where
X true state vector (¢c) The uniform cost:
y observation vector .
X state estimate vector J = { (1)/’2 }x:’f ;6
X =x—%X error estimate vector € IxX=Xll=e
J(X) measure of accuracy
px(X) marginal pdf of x (d) The Huber (1964) cost:
pxy(x,y) joint pdf between x and y L { IIx — %|[2, 1 x—%| <8
Note: Not all function J's are satisfactory cost func 6(|lx — || — 36), otherwise
tions.
() o) 00 , that is,
E{x} = E{x}
Sometimes the estimate is
E{xlx} = x

Quadratic error, uniform error and absolute-value
error cost functions, for constant parameter.



Estimating a Constant Vector
from Noisy Observations

Estimators Observer and Solutions
Bayes rule for pdf’s: Observations: y = Hx + b°
Pxy(Xly) = Pylx (¥ [X)Px(x) Want to determine: py,(x|y)
py(¥)

when x ~ N (u,P), and b° ~ N(0,R), we find:

Conditional mean: 1 . _ -
Py (xly) @ expl =2 (x = ) TP (x - %]

eixlyb= [ xpuy (i) where
- P! = P!+ H'RH,
Minimum variance estimate: and
0 * = Px(H'R™ 'y +P 'p)
xmv(y) = /_Oo Xpyy (X[y) dx General Cost Function:
= x|y}

1 _ 1 _
J(x) = §(u —x)"P N (p—x)+ E(y — Hx)"R™'(y — Hx)
Maximum a posteriori probability estimate: Estimation Results:

apy|x(Y’X)pX(X)
0x

— 0 XMy = Xmap =X

X=XMAP
XML = P)}HTRily
Maximum likelihood estimate (max a priori pdf):

Ay (Y1) XMVIpi=g = XMAP|p1—g = XML

=0
o0x

X=XML




The Least Squares Connection

X
Minimization of the cost function
R 1 AT .
Jis(®) = S(y ~ HY) "R} (y — HY)
results in
% s = (HIRH)"'H'R 1y

which is identical to the ML (MV/MAP) estimate(s)
if R = R. In general, however, the LS solution can
be shown to always be less accurate than that of ML
(MV/MAP).

X
The cost function to be minimized is now
. 1 AT . 1 AT .
Jsp(®) = S(n=%)"P M (p—2)+ S (y-HH) 'R (y - HR)
with minimum achieved for

X sp = (PT'+H'R'H) '"(H' R 'y + P 'p)

which is identical to the MV/MAP estimate if R = R
and P = P. In general, however, the LSP solution
can be shown to be always less accurate than that of
MV /MAP.



Three-dimensional Variational Approach

The approach known in atmospheric data assimilation as

is essentially a method that in the
sense minimizes the cost function J gp(x) seen
previously,

Tsp () = S ()" P (=) 4 (y ~Hx) R (y ~ Hx)

The minimization is typically done at synoptic hours,
with a frequency of 6 hours and using observations avail-
able within a 6-hr window around the synoptic time.

In practice, an atmospheric prediction model is assumed
to provide the mean state estimate u, that is,

p=x"=m(xop)
where x? is the forecast ( ) at a given time af-
ter evolving the model m forward in time, starting from
an initial condition xg representing the best estimate of
the state of the atmosphere at a previous time.

To describe , the time indexes are not so relevant
and are dropped for simplification. Moreover, the map-
ping between observations and the estimate is

and a slightly more general cost function is actually used

Tagvar () = S ()T B 1)+ [y ~h (O R [y—h ()]

where h(x) is the nonlinear observation function (oper-
ator).



Three-dimensional Variational Approach

To minimize this cost function using

, one needs to transform the cost func-
tion back to a quadratic function. This can be done
by linearizing the observation operator h(x) around the
background state, that is,

h(x) ~ h(x®) + H(x")6x

with 6x = x —x® and H(x") now denotes the of
the observation operator, h(x),
h
H(x") = —8 (x)
ox x=x"’
Hence, we can right y — h(x) as
y—h(x) = y-h(x")—-h(x)+h(x")
= d-H®x"x

Using this first order expansion of the observation op-
erator the cost function becomes quadratic form again

1. 1 _
J3dvar (0%) = 55><TP—15><+§[d—H(xb)ax]TR—l[d—H(xb)(sx]

and it defines the so-called problem,
since the cost is now written as a function of the incre-
ment vector 4x.

By inspection of our “estimation of a constant” exer-
cise we see that minimization of the incremental
problem leads to the solution

ox? = P*HTR1d
with P¢ = (P-1 4+ HTR-'H) .



Three-dimensional Variational Approach

Remarks

> The solution provides a LSP solution to the prob-
lem given the uncertainties in the background and ob-
servation error covariances P and R.

>  Employing computational methods to minimize the cost

function directly is referred to as the approach;
whereas calculating the estimate from the analytical so-
lution has become known as the approach, for

the Physical-space Statistical Analysis System.

> In the analytical ( ) approach one avoids the n di-
mensional matrix inversion, by solving an algebraically
equivalent equation (Ex. 7):

ox* = PHT(HPH” 4+ R)1d
which is known as the . and it involves
the inversion of an m < n dimensional matrix.

> In practice, even this observation-space inversion is not
directly calculated. Instead, the equation above is split
in two stages:

(HPHT +R)XA = d
5x¢ = PHIA
where the first equation is solved using an iterative
method, such as a conjugate gradient method. Be-
cause of the size of these matrices, they are all handled
as operators, meaning, the are not actual matrices but

are function calls simulating the application of a matrix
on to a vector.



Three-dimensional Variational Approach

Remarks (cont.)

> The interplay between the and approaches
is a statement of the fact that these approaches are dual
of each other. This essential means that one can be
converted in to the other and their solutions are equiv-
alent (Ex. 8).

> But don't get confused. Addressing the problem from
the analytical solution has nothing to do with the word-
ing ‘“physical-space” as in . Solving the problem
from the analytical solution is detached from the way
the background error covariance is formulated.

> The a priori (background) error covariance is a parame-
terized quantity based on assumptions related to balance
relationships and possible structure of errors. Tradi-
tional implementations of the direct minimization
approach (e.g., NCEP’'s ) have modeled background
error covariances in spectral space. Difficulty in relaxing
the assumptions behind these spectral space formula-
tions has driven the reformulation of the covariances so
they operate in physical-space. Modern systems
now minimize the cost function directly, and formulate
the covariance in physical space (e.g., the

approach)



Three-dimensional Variational Approach

Remarks (cont.)

> As described here, operates at a single time, that
is, the solution of the minimization problem is sought
at a given time. However, the observation vector y
jams together observations from a 6-hr time interval.
This means in particular that calculation of the residual
vector d = y — h(x) is not accurate since x is taken at
the time of the solution (analysis).

> Work done at operational centers has demonstrated that
an improvement in the solution of the problem can be
obtained when using an approach called
. In this approach the function
h is augmented to accommodate backgrounds (first-
guesses) at various times within the window of observa-
tions. Typically, in systems, means taking
x at —3, 0, and 3 hrs from the synoptic hour; or some-
times taking them on an hourly basis. In these cases,
the function h(x) also accommodates a time interpola-
tion procedure to calculate the d vectors at exactly the
time of the observations.



Four-dimensional Variational App?roach

The FGAT approach is a simple attempt to address the

lack of a time dimension in . T he proper way to
account for the time dimension is to redefine the cost
function:

I I
2Jagvar = ||x—x0l|B+ Y [lyi—h(x)||r++ > |Ixi—m(xi-1)|lq

1=0 =1

where ||x||a = xTAx, for an arbitrary n-vector x and an
arbitrary n x n-matrix A.

The cost function above applies to a discrete time in-
terval with a total of I time slots. The first term ac-
commodates the uncertainty in the initial condition with
the matrix B being the error covariance associated with
this uncertainty; the second term accommodates the
uncertainties in the states x; with respect to the obser-
vations at all times t; in the interval, weighted by the
observation error covariances R;; and the last term ac-
commodates for uncertainties in the states themselves,
weighted by the model error covariances Q;. This last
term takes care of the fact that the prediction model is
assumed to be imperfect:

x; = m(X;-1) + q

with the sequence of q; vectors assumed to be white in
time and normal with mean zero and covariance Q;, i.e.,

q; ~ N(0,Q;).



Four-dimensional Variational Approach

Using the incremental approach we can re-write the cost
function as

I I
2Jadvar = |[6%0||B+ + Z |d; — Hidx;i| |+ + Z laillg
1=0 =1
where here again, H; is the Jacobian of h. This trans-
forms the dependence on the cost function from
J4dvar = J4dva7‘(XO7 X1, 7XI) to J4dvar = J4dvar(5X0a q1, - 7qI)-

The simplest way to understand how basically
amounts to a gigantic LSP is by re-writing further the
cost function based on the following augmented vectors:
ox = [oxbql---qF]" and d = [d}dT-.-dT]". Therefore
(Ex. 9),

2Jadvar (0%) = 6xTD716x 4+ (Géx — )R (Géx — d)

where the a priori error covariance matrix becomes D =
diag(B,Q1,---,Qxn), the observations error covariance
becomes R = diag(R1,R5,---,Ry) and the “observa-
tion” matrix becomes

Ho 0 0 0

HlMl,O H1 0 s 0
G = H2M270 H2M271 HQ 0
HM;o H/M;;: H/M;> --- H;
where M; ;1 is the Jacobian of the forward model
om Xi—
M;;i-1(xt_1) = Om(xi-1)
8Xi_1 Xi71=Xf,1

is now part of the observation matrix.



Four-dimensional Variational Approach

Formally, we can infer the solution of the minimization
of this gigantic cost function by referring back to our
“estimation of a constant” exercise, i.e., at the mini-
mum the solution is give by

x*= (D 1+ G'R'G)IG'R1d

Similarly to , when the solution to is being
sought by directly minimizing the cost function we need
its gradient to be available

Vsxd = D7 16x + GTR 1(Géx — d)

since practical minimization algorithms are gradient-based,
e.g., the conjugate gradient method.

Alternatively, we can use the algebraically equivalent ex-
pression
x* =DGT(GDGT +R)!d

which is analogous to the equation, but since it
now involves the fourth dimension of time it is known
here as the equation. Just as in the 3d case, a
practical approach to solve the equation splits
the equation in two steps:

(GDGT+R)A = d
0x* = DGTA

where here the vectors 6x%, A, and d are all four-dimensional.



Four-dimensional Variational Approach

Remarks

> To solve the first equation we must have a
smart way of applying the gigantic matrix on the left-
hand-side to the vector A. The main complication in
this operation comes from having to calculate GDGT\.
To do so, we can notice that an element 5 of this term
is given by (Ex. 10)

I
(GDG™X); = H;M;oB> M/ HI\,
=1

] 1
+ Hj i Mj,QO Z MZmH?AZ
m=1 1=m

These calculations can be broken down in to a backward
integration of the equation

fi = Mg fipr +Hi A

fori=1-—1,1—2,---,0, with f; = H'\;; followed by a
forward integration

gm = Mj,mflgmfl + mem

form=1,2,---,7, and with go = Bfy. This sequence of

operations is known as the sweeper method and specifi-

cally constitute the so called ap-

proach to the practical solution to calculating the
equation (Ex. 11).

> In the perfect model case, Q = 0, the and
equations above dramatically simplify.



Probabilistic Approach to Filtering

Let us indicate by Y} ={y{, " ",¥,_1,¥Y.s,» the set of all
observations up to and including time t;,. Similarly, let
us indicate by X! = {x!,---,x! ,,xl} the set of all true
states of the underlying system up to time ¢;.

Knowledge of the pdf of the true state over the entire
time period given all observations over the same period
would allow us to calculate an estimate of the trajec-
tory of the system over the time period. Therefore,
calculation of the following pdf

p(X}Y7)

is desirable. But, before seeking a system trajectory
estimate, let us seek an estimate of the state of the
system only at time t,. For that, the relevant pdf is

p(x|YR) = p(xilyR Y7 1)
p(x}, 7, Yi_1)
p(yz, Yz_l)

p(y,?;IX}Z:, YZ_l)p(X}Z; YZ_l)
p(yz: Yz_l)

p(yRlxg, Yo )p(xp Y7 Dp(Y7 1)
p(yalY7_)p(Y7 1)

p(¥Rlxp, YR _Dp(x Y7 1)
p(yplY7 1) '

This relates the transition probability of interest with
pdf’'s that can be calculated more promptly.




Probabilistic Approach to Filtering

Whiteness of the observation sequence allows us to write

p(Yilxk, Yi_1) = p(yRlx)
and therefore,
p(yplx)p(x, Y7 1)
p(ylY7_1)

It remains for us to determine each one of the transition
probability densities in this expression.

p(x,[Y7) =

vi = Hix + by
bz ~ N(()) Rk)

In this case, an immediate relationship between the vari-
ables above and those from the example of estimating
a constant vector can be drawn:

>y =Yy

> X — X,
> py|x(ylx) — p(y]Og|X7;g)
> px(x) = p(x| Y7 1)

> py(y) = p(y2 Y7 ;)



Probabilistic Approach to Filtering

Consequently we have

1
(27 )™ /2|Ry,|1/2

1 — o)
exp [—5<y;; H)TR (v — Hkx@]

p(yilxy) =

where we noticed that

E{yilxi} = E{(Hpx} + b})|x}} = Hpx,
and

E{ly; — E{yiIxiHyr — E{yrlxi " 1%k}
Ry

cov{y?, yolxi}

Analogously, we have

1
(2m) ™ 2[T, 172

1 — (0]
exp {—ﬁ(yz —Hx], )T yg - HkX,J:w_l)}

p(VIYi1) =

where we define x and the m; x m; matrix I'y, as

f
k|k—1

X1 = EGIYP.}, T = HyP{H] + Ry

with the n x n matrix P£ defined as

P£|l<;—1 = &{[x; - Xi] [x}, — X£]T|Y1(;—1}



Probabilistic Approach to Filtering

To fully determine the a posteriori conditional pdf p(x}|Y?),
it remains to find the a priori conditional pdf p(x.|Y{ ).
Since we assumed all pdf's to be Gaussian, the from
the definitions of x/ and P/ above we have p(x.|Y?_ ) ~

N(X£|k_17Pk|k—1)v that is,

1
(2m)2[P]|1/2

1
exp {_E(Xz k\kz l)T(Pk:\k: ) l(xz_xim—l)}

(Y ) =

and the conditional pdf of interest can be written as

1 1
p(xi[Y?) = - exp (——J)
k (27T)n/2|Pk:|kz‘l/2 2

where
J = (que x;)" (P} \k) 1(Xk|k: X},)

is the cost function, with xk“{: minimizing it.

We can now identify the quantities X\, and Px of the
problem of estimating a constant vector with xj and
P{, respectively. Consequently, it follows from this cor-
respondence that

XZ“{; = k:|k: 1 + Pk:|k: 1HT]_—‘_1(yk HkX
Pyt = (P, ) ' + HIR'H,

k|k— 1)



Probabilistic Approach to Filtering

Remarks

> T he estimate x¢

Flk maximizing the a posteriori pdf is the
MAP estimate.

> Moreover, since the resulting a posteriori pdf is Gaus-
sian, this estimate is also the conditional mean, that
is,

Xz|k = S{XZ‘YZ )

and therefore it is the MV estimate which is what the
Kalman filter obtains.

> Similar results can be obtained by minimizing the cost
function

T3dvar(8xk) = ox{ (P, )7 oxi 4 (di — Hybx,) "Ry (dy — Hydxy,)

where x;, = xi — Xi‘k_l, and d; = y9 — Hkxém—l' In
the meteorological literature Jzgyar(dxy) is referred to
as the

analysis cost function.

> Since in practice we have only rough estimates of the
observations and forecast error covariance matrices Ry,
and P£|k_1, the minimization problem above solves none
other than a LSP problem, given some prior information.



Probabilistic Approach to Filtering

Remarks (cont.)

> So far we have made no assumptions about the process
x! other than its conditional pdf p(x%|X¢ ,) being Gaus-
sian. However, if we want to be able to calculate an
estimate of the state one time ahead, that is at t;41,
using the knowledge gather up to time t, we must con-
sider the pdf

p(Xi;+1aXi;\X%) = p(X§g+1|X§mX%)p(X§f\Xz)
= p(X2+1|X2)p(X§c|Xz)

which refers to the yet unspecified transition pdf p(xj_ , [x})
and therefore we must know more about the process x',;.

> When the process x! is linear the calculations are simple.
That is, the system

Xjp1 = Myg14X}, + blyq
with b§€+1 ~ N(0,Q)+1) results in a Gaussian transition
pdf (for an initial Gaussian pdf p(x})):

p(X)y11%5) ~ N (Mit1.6X5, Qrt1) -

> For linear dynamical process above it follows that

X[, = =MpE{xia Y + (bl YD)
= Mp1aXpp
P£—|—1|k: — COU{X2+17X2+1\Y§§}

Myt 1P M g1, + Qutr



Simple Illlustrations
&
Points to Remember



Stochastically forced double-well potential

dx = f(x)dt + odb
X=f(x)=—-4x(x*-1)

1.6 1 a
E Filtered Solution ( )
] Estimaled Error Covariance
-0.0
]
] Reference Solution
-1.6 T T T T T T T T T T T rrr v 1
0.0 20 4.0 6.0
1.6 A

-4
] Filtered Solution ( )
] Estimated Error Covariance

b

-0.0 .
] Reference :X:}I}/\H‘A/\MW(\/‘W
-1.6 +—rTTTrT T T T T T T T T T T T T T
0.0 2.0 4.0 6.0
1.6 7

Filtered Solution

stimoted Error Covariance

Reference Solution

-1.6

0.
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0 2.0 4.0 6.0

From Miller et al. (1994)

Dynamical System: Lorenz (1963)

& = oy — =)
Yy = pr—y — T2
2 = zy — Bz

Chaotic for the following parameters:

c=10 p=28 B8 =28/3

Unstable equilibrium points:

(0,0,0)

(VB(p —1),£VB(p— 1), -1)




Diverging Solutions from Highly
Nonlinear Dynamics

What does a tiny initial perturbation do to prediction? What about a not-so-tiny initial perturbation?

o(0) = 106

0 2 4 3 8 10 12 14 16 18 20 0 2 4 & 8 10 12 14 16 18 20
time time

(=
(=]

Answer: It causes a lot of trouble! The two runs started
from initial conditions differing by about a few percent in
Answer: Cause some (chaotic) trouble! magnitude. You can think of the red lines as being the true
state evolution and the green lines as being the predicted
state. In this case, the prediction becomes useless very

quickly. The solution to this problem is to assimilate
observations.



The Extended Kalman Filter for Highly
Nonlinear Dynamics

Back to Miller et al (1994)

Then, what does data assimilation do?
o(obs) =2

Red: Truth
Green: Estimate
Pluses: Observations

o 2 4 & 8 t?nlfe 12 14 8 18 20

Answer: It improves our ability to estimate the true state and make
relatively reasonable short- to medium-range predictions. However,
depending on the data assimilation scheme, the estimate may diverge
after a while. The red line represents the true state while the green line
represents the estimate (assimilation), the crosses are the observations;

the data assimilation scheme is the extended Kalman filter (EKF).



Some Traps to Avoid

Filter error estimates are reliable indicators of performance!

J

rms error

A

“True” rms error

Computed rms error
(i 1 1 1 1 L

TinTe

(a)

Computed rms error

4 rms €rror

“True” rms error

Time
(b)

\ rms e€rror

Computed rms error

“True” rms error

Time
(c)

From Maybeck (1981 also 1982)

Lesson: /deally the specified (computed)

error covariances should be as close as possible
to the true error covariance (bottom) — this is
what we all aim when trying to tune the error
statistics in our systems.

Under estimation of errors is rather undesirable
as it is bound to lead to filter divergence (top).

In general, slightly over estimation of error keeps
the filter from “believing” too much on its own
estimates — thus preventing divergence
(mid-plot shows an exaggerated version of this
—that in this case still diverge).



Some Traps to Avoid

Do observations always improve estimate through the analysis step?
SRR E AL S Lesson: No. Only in the expected mean
T sense, and in the optimal (BLUE)
circumstance this is the case. Recall
also that in practice we only have a
single realization of nature to work

LAEERE RN KN
T T

U. Y. P RO TOTRL COPOReNTS
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O v T

from.
— .30 - - sk ke e © . .”S s ovzf: me|REm°N — b
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BLUE: The linear Kalman filter is sometimes referred to as the
(b)est (l)inear (u)nbiased (e)stimate — for linear problems
From Ghil et al. (1981) under assumed error statistics.



Some Traps to Avoid

Do observations always improve estimate through the analysis step?

Pd>0

-1 0 1 2 3
log_10 (sig_o / sig_b)

distribution function for d

d=x_a2-x_b"2

From Ehrendorfer (2007)

(another illustration)
TMI-Rain—Rates

Profiler—Wind | —
IﬁRsSI ‘ Percentage of observations
AIRS | contributing to improve the
NEXRAD-Wind | assimilation cycle of a real
AMSUA . NWP data assimilatidn system
MODIS-Wind | on sy .
MHS Contributions are spljt into
GOES seéﬁrate components of
Land—Surface ; . j
Aircraft observing system over the
Marine—Surface month of August 2007.
ASCAT-Wind| :
Radiosonde |
Satellite—Wind \
WINDSAT-Wind |
Dropsonde \
PIBAL | |
GPSRO
45 75

55 65
From Todling (2013)

Lesson: As long as there are uncertainty in the observations

and in our models there will always be a considerable
fraction of the data that will deteriorate our estimate.

Attempts to eliminate observations that seem to
offend the estimate can at best work locally.



Some Traps to

Avoid

Time averaging provides good means of getting handle on statistics!

Stochastic harmonic oscillator system

0 1
X = [ ~1 —0.8 :| Xk—1 T dk , . . .
i Single realization
Y = ka +6k:7
xo = [10 10]T X

H,,,_; = I, with Ry, = 0.1L.

- Q = diag(1/3,10/3).

Xy

Qt(1,1)=0.333
Qe(1,1)=0.271

Qt(1,1)=0.33333:Qe(1,1)=0.27136

Qt(1,1)=0.
Qe(1,1)=-0.025

Qt(2,1)=0:Qe(2,1)=-0.024783

Qt(1,1)=3.333

Lesson: Not necessarily. Time averaging
filter statistics has the tendency to provide

50 100

Qt(1,1)=0.333

Qe(1,1)=0.328

Qt(1,1)=0.33333:Qe(1,1)=0.32762

" Qe(1,1)=2.945""

Qt(2,1)=0:Qe(2,1)=0.0030994

underestimates of variances, for example.
30-sample Monte Carlo

20 40 60 80 100

Qt(1,2)=0;Qe(1,2)=0.0030994

-5
0 20 40 60

80 100

Qt(2,2)=3.3333;Qe(2,2)=3.3138
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or\ Y
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A twist on Maybeck (1982; Vol. 2, Ch. 8); see Todling (2014; QJRMS)

Qt(1,1)=0
Qe(1,1)=0.003

Qt(1,1)=3.333
Qe(1,1)=3.314



Something to Keep in Mind

Robust estimation can be achieved with adaptive procedures

Adaptive Optimal Interpolation
20

0 5 10 15 20

alpha

0 n_l‘” 1 —”,J“.<H T H_ __h.-‘ﬂ-\k Lo
0 5 10 15 20
time

The assimilation scheme here is an adaptive optimal interpolation. In this case, the
propagated error covariance (the costly part of the EKF) is replaced by a constant forecast
error covariance matrix scaled by a single parameter that gets to be adaptively estimated on
the basis of the observation-minus-forecast residuals (see Dee 1995). The time series of the
estimated parameter is displayed in the lower panel above.




Closing Remarks

» Solid understand of the three estimates (MV,
MAP, ML) examined here gives a broad
perspective on estimation problems.

» Most methods employed in practice fall under
the LS-type category.

» Adaptive procedures are typically the most
robust — viz. modern hybrid ensemble-variational
approaches.



