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Warning:	
  This	
  is	
  by	
  no	
  means	
  an	
  exhaus3ve	
  introduc3on	
  to	
  the	
  subject.	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  First	
  Presented	
  to	
  the	
  Par9cipants	
  of	
  the	
  2013	
  
	
  UMD	
  Summer	
  School	
  on	
  Data	
  Assimila9on	
  during	
  their	
  visit	
  to	
  NASA	
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CLICK HERE FOR DAILY WEATHER MAPS ONLINE 
http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_maps.html 

1871 Nov. 1 Q First weather map, issued by U.S. Army Signal Service with isobars.  
Synop

 
sis and probabilities enlarged below. 84-­‐hr	
  Fcst	
  for	
  Today’s	
  12	
  UTC	
   1	
  Nov	
  1871:	
  First	
  weather	
  map,	
  issued	
  by	
  

U.S.	
  Army	
  Signal	
  Service	
  (showing	
  isobars;	
  *)	
  Example 2: de Angelis taught, 

 
"The surest remedy against thunder is that which our Holy Mother the Church practises,  
namely, the ringing of bells when a thunderbolt impends: thence follows a twofold effect,  
physical and moral--a physical, because the sound variously disturbs and agitates the air,  
and by agitation disperses the hot exhalations and dispels the thunder; but the moral effect is  
the more certain, because by the sound the faithful are stirred to pour forth their prayers, by which 
they win from God the turning away of the thunderbolt." 

 

 

 
 
 

 

1686 Q England, Edmund Halley (1656 Q 1742) published 

the first comprehensive map  of trade winds. He is the 

comet guy and the first to connect earth^s general 

circulation with the distribution of solar heating . 

 

 

 

 

 

 
Halley^s map of the trade winds and monsoon winds. 
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1686	
  Edmund	
  Halley	
  first	
  map	
  of	
  the	
  trade	
  winds	
  (*):	
  
connec9ng	
  general	
  circula9on	
  with	
  solar	
  hea9ng	
  distribu9on	
  

(*)	
  source:	
  www.shorstmeyer.com/msj/geo165/met_hist.pdf ‎	
  	
  -­‐	
  Steve	
  Horstmeyer	
  

When	
  did	
  it	
  all	
  begin?	
  
Steven	
  Horstmeyer’s:	
  
“An	
  Outline	
  of	
  the	
  History	
  of	
  	
  
Meteorology”	
  is	
  a	
  wonderful	
  
presenta9on	
  you	
  should	
  consult.	
  

The	
  presenta9on	
  is	
  a	
  way	
  more	
  
modest	
  illustra9ve	
  short	
  history	
  
of	
  es9ma9on	
  for	
  NWP.	
  	
  



“We	
  know	
  today,	
  mainly	
  due	
  to	
  the	
  work	
  of	
  J.	
  Charney,	
  that	
  we	
  
can	
  predict	
  by	
  calcula3on	
  the	
  weather	
  over	
  an	
  area	
  like	
  that	
  of	
  
the	
  United	
  States	
  for	
  a	
  dura3on	
  like	
  24	
  hours	
  [.	
  .	
  .].	
  We	
  know	
  
that	
  this	
  gives	
  results	
  which	
  are,	
  by	
  and	
  large,	
  as	
  good	
  as	
  what	
  
an	
  experienced	
  ‘subjec3ve’	
  forecaster	
  can	
  achieve,	
  and	
  this	
  is	
  
very	
  respectable.”	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  John	
  von	
  Neumann,	
  1954.	
  	
  	
  



Data	
  Assimila9on	
  or	
  …	
  ?	
  
•  Inverse	
  Problems	
  
•  Stochas9c	
  Es9ma9on	
  
•  Distributed	
  Parameter	
  Es9ma9on	
  
•  Lumped	
  Parameter	
  Es9ma9on	
  
•  Op9mal	
  Filtering	
  and	
  Smoothing	
  
•  Bayesian	
  Es9ma9on	
  
•  Least	
  Squares	
  Es9ma9on	
  
•  Absolute	
  Averaging	
  	
  

When	
  did	
  ideas	
  on	
  es3ma3on	
  emerge?	
  	
  

My	
  main	
  sources:	
  Hacking,	
  Franklin,	
  Lanczos,	
  McGee	
  &	
  Schmidt	
  and	
  sprinkles	
  from	
  many	
  others.	
  

Minimiza9on	
  
Uncertainty	
  
Probability	
  



Outline	
  
1.  Least;	
  Extremum;	
  Mimimum	
  
2.  Uncertainty	
  
3.  Probability	
  
4.  Two	
  Real-­‐Like	
  Applica9ons	
  

q  The	
  Apollo	
  Missions	
  
q  Predic9ng	
  the	
  Weather	
  

5.  Closing	
  Remarks	
  



Least	
  

Extremum	
  

Minimum	
  



Hero	
  of	
  Alexandria	
  
	
  	
  B.	
  c	
  10	
  AD	
  

Hero	
  showed	
  that	
  the	
  path	
  taken	
  by	
  a	
  	
  
light	
  ray	
  going	
  from	
  an	
  object	
  to	
  a	
  mirror	
  	
  
and	
  from	
  the	
  mirror	
  to	
  an	
  observer,	
  is	
  the	
  shortest	
  of	
  any	
  path	
  going	
  from	
  the	
  object	
  	
  
to	
  the	
  eye	
  of	
  the	
  observer	
  via	
  the	
  mirror.	
  	
  He	
  derived	
  the	
  law	
  of	
  reflec3on.	
  

The	
  Shortest	
  Path	
  

	
  	
  Aristotle	
  
384-­‐322	
  BC	
  

Modified	
  from	
  starchild.gsfc.nasa.gov	
  

Hero’s	
  thinking	
  was	
  consistent	
  with	
  
that	
  of	
  Aristotle,	
  who	
  thought	
  
that	
  planets	
  moved	
  in	
  circles	
  
because	
  they	
  were	
  the	
  shortest	
  	
  
closed	
  path	
  an	
  object	
  could	
  trace	
  
when	
  going	
  around	
  another.	
  

Combined	
  with	
  the	
  maximum	
  speed	
  of	
  mo3on,	
  Hero’s	
  
thinking	
  leads	
  to	
  the	
  concept	
  of	
  the	
  shortest	
  3me	
  traveled.	
  



The	
  Principle	
  of	
  Least	
  Time	
  

Pierre	
  de	
  Fermat	
  
	
  	
  e1600-­‐1655	
  

reflec9on	
  

refrac9on	
  

θi	
   θr	
  

θR	
  

n1	
  
n2	
  

Ibn	
  Sahl	
  manuscript	
  of	
  984,	
  	
  
describing	
  the	
  law	
  of	
  refrac9on	
  
six	
  centuries	
  before	
  Snell-­‐Descartes	
  

Fermat	
  derived	
  the	
  law	
  of	
  refrac3on	
  by	
  	
  
using	
  Hero’s	
  principle	
  of	
  shortest	
  9me	
  traveled.	
  	
  

A	
  similar	
  problem	
  of	
  interest	
  was	
  that	
  of	
  the	
  brachistochrone	
  	
  
–	
  the	
  curve	
  of	
  quickest	
  descent	
  –	
  proposed	
  by	
  Johann	
  	
  
Bernoulli,	
  and	
  solved	
  by	
  Newton,	
  	
  Jakob	
  Bernoulli	
  (brother),	
  	
  
Leibniz,	
  Tschirnhaus,	
  and	
  l’Hopital.	
  Jakob	
  B.’s	
  solu9on	
  was	
  
based	
  on	
  Fermat’s	
  least	
  9me	
  traveled.	
  	
  

Simula9on	
  from	
  
hnp://curvebank.calstatela.edu/brach/brach.htm	
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The	
  Principle	
  of	
  Least	
  Ac9on	
  

Pierre-­‐Louis	
  de	
  Maupertuis	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1698-­‐1759	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leibniz	
  argued	
  that	
  the	
  principles	
  of	
  nature	
  could	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  expressed	
  in	
  the	
  terms	
  of	
  minimum	
  principles.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  This	
  went	
  along	
  with	
  his	
  vision	
  that	
  we	
  live	
  in	
  the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ‘best	
  of	
  all	
  possible	
  worlds’.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  But	
  it	
  was	
  Maupertuis	
  who	
  explained	
  the	
  impact	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  bodies	
  by	
  assuming	
  the	
  product	
  mvs	
  to	
  be	
  a	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  minimum	
  following	
  D’Alembert’s	
  principle.	
  The	
  	
  
	
  	
  	
  quan99es	
  mvs	
  was	
  named	
  ac3on.	
  He	
  showed	
  how	
  Fermat’s	
  principle	
  
	
  	
  	
  of	
  least	
  3me	
  can	
  be	
  replaced	
  by	
  the	
  principle	
  of	
  least	
  ac3on.	
  
	
  
Euler	
  generalized	
  Maupertuis	
  principle	
  into	
  an	
  integral	
  theorem	
  applicable	
  to	
  
mo9on	
  of	
  par9cles	
  subjected	
  to	
  a	
  conserva9ve	
  force.	
  	
  The	
  ac9on	
  principle	
  
was	
  recognized	
  to	
  be	
  a	
  principle	
  of	
  extremum.	
  	
  
	
  
Lagrange	
  extended	
  Euler’s	
  principle	
  introducing	
  the	
  feature	
  of	
  invariance	
  with	
  
respect	
  to	
  arbitrary	
  change	
  of	
  coordinates,	
  and	
  developed	
  along	
  the	
  way	
  the	
  
calculus	
  of	
  varia3ons.	
  He	
  set	
  the	
  founda9ons	
  of	
  analy9c	
  mechanics.	
  	
  
	
  
Hamilton	
  transformed	
  the	
  second	
  order	
  differen9al	
  equa9ons	
  of	
  Lagrange	
  into	
  
a	
  more	
  desirable	
  set	
  of	
  first	
  order	
  differen9al	
  equa9ons	
  with	
  double	
  the	
  number	
  	
  
of	
  variables	
  –	
  called	
  “canonical	
  form”	
  –	
  promp9ng	
  a	
  new	
  world	
  of	
  discoveries.	
  	
  
	
  

	
  	
  	
  	
  Based	
  on	
  
Lanczos	
  (1949)	
  



Uncertainty	
  



Accoun9ng	
  for	
  Uncertainty	
  
Another	
  contribu9on	
  from	
  Galileo	
  	
  

Constella9on	
  of	
  Cassiopeia	
  
showing	
  Tycho	
  Brahe’s	
  nova	
  
of	
  1572.	
  

Tycho	
  Brahe	
  refuted	
  the	
  Aristolelian	
  belief	
  in	
  the	
  unchanged	
  
sphere	
  of	
  the	
  fixed	
  start	
  (beyond	
  the	
  Moon),	
  but	
  controversy	
  
remained.	
  

In	
  1621	
  Scipione	
  ChiaramonC	
  published	
  results	
  from	
  a	
  compara9ve	
  
study	
  examining	
  observa9ons	
  of	
  star	
  eleva9on	
  made	
  by	
  13	
  	
  
astronomers.	
  	
  He	
  looked	
  at	
  12	
  pairs	
  of	
  observa9ons	
  and	
  concluded	
  
the	
  es9mated	
  distances	
  from	
  each	
  measurement	
  to	
  be	
  less	
  than	
  
the	
  distance	
  of	
  the	
  moon.	
  	
  Being	
  an	
  Aristotelian,	
  he	
  wanted	
  to	
  	
  
show	
  the	
  heavens	
  to	
  be	
  unchanging.	
  

	
  	
  	
  	
  	
  Based	
  on	
  
Franklin	
  (2001)	
  

Galileo	
  points	
  out	
  that	
  of	
  the	
  65	
  possible	
  pairs	
  Chiaramon9	
  chose	
  only	
  those	
  suppor9ng	
  
his	
  belief.	
  Galileo	
  re-­‐evaluates	
  the	
  maner	
  by	
  realizing	
  that	
  observa9ons	
  are:	
  
	
  	
  (i)	
  “equally	
  prone	
  to	
  err	
  in	
  one	
  direc9on	
  and	
  the	
  other”;	
  and	
  that	
  	
  
	
  (ii)	
  carefully	
  taken	
  measurements	
  are	
  “more	
  likely	
  to	
  err	
  linle	
  than	
  much”	
  
	
  
Galileo’s	
  solu9on	
  is	
  to	
  choose	
  the	
  posi9on	
  that	
  makes	
  the	
  sum	
  of	
  the	
  correc3ons	
  least.	
  
	
  
Galileo	
  was	
  then	
  able	
  to	
  show	
  that	
  indeed,	
  Tycho	
  Brahe	
  was	
  right	
  in	
  saying	
  the	
  nova	
  had	
  
appeared	
  in	
  the	
  unchanging	
  sphere	
  of	
  the	
  stars!	
  



The	
  Principle	
  of	
  Least	
  Constraint	
  &	
  	
  
The	
  Least	
  Squares	
  Method	
  
Gauss:	
  from	
  extremum	
  to	
  minimum	
  	
  

Johann	
  Carl	
  Friedrich	
  Gauss	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1777-­‐1855	
  

Up	
  to	
  about	
  the	
  9me	
  of	
  Gauss	
  all	
  principles	
  of	
  ac9on	
  led	
  to	
  an	
  
extremum	
  solu9on,	
  not	
  necessarily	
  a	
  minimum.	
  Star9ng	
  from	
  
D’Alembert’s	
  principle	
  of	
  equilibrium	
  of	
  forces	
  ac9ng	
  on	
  a	
  system	
  

	
  	
  	
  	
  	
  Based	
  on	
  
Lanczos	
  (1949)	
  

which	
  has	
  the	
  advantage	
  of	
  its	
  sta3onary	
  solu3on	
  being	
  automa9cally	
  a	
  minimum	
  –	
  	
  
essen9ally	
  because	
  mi	
  >	
  0.	
  
	
  
Though	
  this	
  does	
  provide	
  a	
  more	
  complicated	
  solu9on	
  to	
  the	
  problem	
  requiring	
  evalua9on	
  
of	
  the	
  accelera9ons	
  Gauss	
  was	
  par9cularly	
  married	
  to	
  this	
  principle	
  since	
  it	
  directly	
  related	
  
to	
  his	
  formula9on	
  of	
  the	
  least	
  squares	
  method.	
  Here,	
  the	
  external	
  forces	
  could	
  be	
  thought	
  
as	
  observa9ons,	
  the	
  force	
  of	
  iner9a	
  as	
  the	
  true	
  forces,	
  and	
  the	
  mass	
  could	
  be	
  interpreted	
  
as	
  weights	
  given	
  accoun9ng	
  for	
  different	
  quality	
  of	
  the	
  measurements.	
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Gauss	
  showed	
  it	
  to	
  be	
  equivalent	
  to	
  the	
  principle	
  of	
  least	
  
constraint	
  	
  

D’Alembert’s principle
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The	
  Least	
  Squares	
  Method	
  
Laplace	
  and	
  Gauss:	
  orbit	
  of	
  celes9al	
  objects	
  from	
  observa9ons	
  

	
  	
  	
  	
  	
  	
  	
  	
  Based	
  on	
  
Lewis	
  et	
  al.	
  	
  (2006)	
  

(a)  the	
  algebraic	
  sum	
  of	
  residuals	
  should	
  vanish,	
  and	
  
(b)  the	
  sum	
  of	
  the	
  absolute	
  values	
  of	
  the	
  residuals	
  should	
  be	
  a	
  
	
  	
  	
  	
  	
  	
  	
  minimum	
  [recall	
  our	
  story	
  on	
  Galileo	
  a	
  few	
  slides	
  back].	
  

The	
  desire	
  to	
  determine	
  present	
  and	
  future	
  posi9on	
  of	
  celes9al	
  
bodies	
  has	
  been	
  with	
  us	
  since	
  we	
  first	
  wondered	
  about	
  the	
  heavens.	
  
The	
  Babylonians	
  and	
  Greeks	
  kept	
  extensive	
  observa9ons	
  of	
  the	
  skies.	
  
Galileo,	
  Kepler,	
  and	
  Newton	
  made	
  known	
  breakthroughs	
  in	
  using	
  
observa9ons	
  and	
  to	
  explain	
  the	
  skies.	
  Laplace,	
  Lagrange	
  and	
  others	
  	
  
provide	
  us	
  with	
  profound	
  insights	
  in	
  methods	
  to	
  determine	
  the	
  path	
  	
  
of	
  comets	
  from	
  observa9ons.	
  	
  Laplace,	
  in	
  par9cular,	
  introduced	
  	
  
concepts	
  fundamental	
  to	
  our	
  story:	
  

By	
  the	
  late	
  1700s,	
  early	
  1800s,	
  the	
  race	
  was	
  on	
  to	
  predict	
  the	
  reappearance	
  of	
  Ceres,	
  a	
  
planet	
  discovered	
  between	
  Mars	
  and	
  Jupiter.	
  On	
  November	
  1801,	
  	
  
Gauss	
  predicted	
  the	
  planet’s	
  future	
  path.	
  His	
  results	
  were	
  confirmed	
  
on	
  January	
  1,	
  1802	
  by	
  Franz	
  Zach	
  and	
  Heinrich	
  Olbers	
  at	
  two	
  different	
  
observatories	
  in	
  Germany.	
  	
  

Ceres	
  from	
  Hubble.	
  Today	
  
known	
  as	
  a	
  planetoid	
  in	
  
the	
  asteroid	
  belt.	
  	
  
Photo	
  from	
  jpl.nasa.gov	
  

Gauss	
  solu9on	
  combines	
  Newton’s	
  itera9ve	
  method	
  to	
  solve	
  	
  
nonlinear	
  eqs,	
  with	
  his	
  own	
  development	
  of	
  the	
  Least	
  Squares	
  Method.	
  



Probability	
  



The	
  Concepts	
  of	
  Probability	
  Become	
  	
  
Mathema9cal	
  

From	
  India	
  to	
  Pascal	
  and	
  Fermat	
  

Though	
  concepts	
  of	
  probability	
  only	
  started	
  to	
  mature	
  aver	
  the	
  
mathema9cal	
  forms	
  more	
  familiar	
  to	
  us,	
  the	
  story	
  of	
  Nala,	
  told	
  
in	
  the	
  Indian	
  Sunskrit	
  epic	
  Mahābhārata,	
  who	
  possessed	
  by	
  a	
  rival	
  
demigod	
  loses	
  his	
  empire	
  to	
  gambling.	
  Only	
  aver	
  	
  coming	
  across	
  	
  
Rturpana	
  and	
  learning	
  the	
  science	
  of	
  es9ma9on	
  is	
  Nala	
  able	
  to	
  
regain	
  his	
  empire	
  and	
  his	
  beloved	
  DamayanC	
  in	
  a	
  game.	
  

	
  	
  	
  	
  	
  	
  	
  Based	
  on	
  
Hacking	
  	
  (1975)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  &	
  
	
  Franklin	
  (2001)	
  

Formal	
  understanding	
  of	
  the	
  concept	
  of	
  averaging	
  (expecta3on)	
  is	
  rela9vely	
  new,	
  da9ng	
  from	
  	
  
the	
  1650’s	
  and	
  the	
  correspondences	
  between	
  Fermat	
  and	
  Pascal.	
  	
  Our	
  present-­‐day	
  concept	
  
of	
  probability	
  dates	
  back	
  from	
  that	
  period.	
  Thoughts	
  and	
  needs	
  in	
  various	
  areas	
  from	
  law,	
  	
  
gambling,	
  economics,	
  agriculture,	
  and	
  theology	
  all	
  combined	
  to	
  form	
  what	
  we	
  know	
  today.	
  	
  

Nala	
  meets	
  his	
  beloved	
  	
  
Damayan9	
  who’s	
  chosen	
  him	
  
over	
  the	
  Gods.	
  c	
  A.D.	
  400;	
  From	
  
hnp://en.wikipedia.org/wiki/Nala	
  

In	
  the	
  words	
  of	
  Ian	
  Hacking	
  ``That	
  is	
  evidence	
  that	
  in	
  India,	
  long	
  	
  
ago,	
  it	
  was	
  recognized	
  that	
  there	
  was	
  a	
  genuine	
  science	
  to	
  master	
  …”	
  	
  

Basic	
  concepts	
  of	
  averaging	
  go	
  as	
  far	
  back	
  as	
  the	
  Greeks.	
  Hipparchus,	
  about	
  150	
  BCE,	
  was	
  
able	
  to	
  develop	
  geometric	
  models	
  to	
  fit	
  the	
  vast	
  Babylonian	
  observa9ons	
  of	
  the	
  stars.	
  His	
  
eccentric	
  circles	
  with	
  epicycles	
  are	
  made	
  to	
  fit	
  the	
  observa9ons	
  in	
  a	
  method	
  close	
  to	
  what	
  
we	
  call	
  regression.	
  	
  But	
  the	
  link	
  between	
  averaging	
  and	
  probability	
  didn’t	
  come	
  un9l	
  later.	
  



The	
  Concepts	
  of	
  Probability	
  Become	
  	
  
Mathema9cal	
  
Becoming	
  Bayesian	
  

	
  	
  	
  	
  	
  	
  	
  Based	
  on	
  
Hacking	
  	
  (1975)	
  

What	
  does	
  it	
  mean	
  to	
  be	
  ``Bayesian’’?	
  It	
  means	
  we	
  ``believe’’	
  we	
  can	
  use	
  the	
  outcome	
  of	
  past	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  events	
  to	
  infer	
  the	
  chances	
  of	
  a	
  certain	
  outcome	
  in	
  the	
  next	
  trail.	
  

Stephen E. Fienberg 3

Bayesian revival of the 1950s and especially during the 1960s. Today, Bayesian methods
are integrated into both the fabric of statistical thinking within the field of statistics
and the methodology used in a broad array of applications. The ubiquity of Bayesian
statistics is illustrated by the name of the International Society for Bayesian Analysis,
its growing membership, and its new on-line journal. But one can also see the broad
influence of Bayesian thinking by a quick scan of major journals of not only statistics
but also computer science and bioinformatics, economics, medicine, and even physics,
to name specific fields.

This paper is far from an exhaustive treatment of the subject, for that would have
taken a book. Rather, I have chosen to cite a few key contributions as part of the his-
torical development, especially as they relate to the theme of the adjective “Bayesian.”
I cite many (but not all) relevant books and a small fraction of the papers that were
part of the development of Bayesian inference.

2 Bayes’ Theorem

My story begins, of course, with the Reverend Thomas Bayes,8 a nonconformist En-
glish minister whose 1763 posthumously published paper, “An Essay Towards Solving a
Problem in the Doctrine of Chances,” (14) contains what is arguably the first detailed
description of the theorem from elementary probability theory now associated with his
name. Bayes’ paper, which was submitted for publication by Richard Price, is remark-
ably opaque in its notation and details, and the absence of integral signs makes for
difficult reading to those of us who have come to expect them.

The Essay considers the problem, “Given the number of times in which an unknown
event has happened and failed: Required the chance that the probability of its happen-
ing in a single trial lies somewhere between any two degrees of probability that can
be named.” [p. 376] Writing in an unpublished 1960 reading note, L.J. Savage (143)
observed: “The problem is of the kind we now associate with Bayes’s name, but it is
confined from the outset to the special problem of drawing the Bayesian inference, not
about an arbitrary sort of parameter, but about a ‘degree of probability’ only.” This
statement actually provides us with the first clue to the title of this article; clearly in
1960, Savage was using the term “Bayesian” as we do today. And he notes what others
have subsequently: that Bayes did not actually give us a statement of Bayes’ Theorem,
either in its discrete form,

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

, (1)

(this came later in Laplace (97)), or in its continuous form with integration, although
he solved a special case of the latter.

In current statistical language, Bayes’ paper introduces a uniform prior distribution
on the binomial parameter,9 θ, reasoning by analogy with a “billiard table” and drawing

8For biographical material on Bayes see Bellhouse (16) and Dale (37).
9Of course Bayes didn’t use the term parameter—David and Edwards (41) trace the introduction

Actually	
  due	
  to	
  Laplace	
  (1774)	
  

In	
  ``When	
  	
  Did	
  Bayesian	
  Inference	
  Become	
  
“Bayesian”?’’,	
  Stephen	
  Fienberg	
  traces	
  the	
  roots	
  
of	
  our	
  present-­‐day	
  referencing	
  to	
  Thomas	
  Bayes	
  
approach	
  to	
  probability	
  problems.	
  

Rev.	
  Thomas	
  Bayes	
  
	
  	
  	
  	
  	
  	
  c1701-­‐1761	
  

Laplace	
  played	
  a	
  fundamental	
  role	
  in	
  solidifying	
  concepts	
  in	
  probability,	
  but	
  it	
  wasn’t	
  un9l	
  
early	
  in	
  the	
  1900s	
  that	
  Bayes	
  thinking	
  gained	
  momentum,	
  and	
  eventually	
  influenced	
  a	
  huge	
  
body	
  of	
  work:	
  Fisher,	
  Neyman,	
  Pearson,	
  Carnap,	
  Kolmogorov,	
  Turing,	
  Keynes,	
  &	
  others.	
  	
  

For	
  us,	
  our	
  main	
  interest	
  in	
  Bayesian	
  probability	
  is	
  that	
  it	
  essen9ally	
  provides	
  the	
  proper	
  link	
  
among	
  various	
  formula9ons	
  of	
  the	
  es9ma9on	
  problem.	
  	
  



Lp	
  Norms	
  in	
  Es9ma9on	
  

When a traveler reaches a fork in the road, the L1-norm 
tells him to take either one way or the other, the L2-norm 
instructs him to head off into the bushes.�

J.	
  G.	
  Clearbout	
  &	
  F.	
  Muir,	
  (1973);	
  	
  quoted	
  in	
  Tarantola	
  (2005)	
  

We	
  have	
  seen	
  that	
  Galileo	
  and	
  Laplace	
  
have	
  chosen	
  the	
  requirement	
  that	
  the	
  	
  
absolute-­‐value	
  of	
  the	
  residual	
  error	
  be	
  
minimal	
  when	
  trying	
  to	
  come	
  up	
  with	
  
the	
  es9mates	
  they	
  sought.	
  

We	
  have	
  also	
  seen	
  that	
  Gauss	
  added	
  
an	
  alterna9ve	
  requiring	
  the	
  square	
  of	
  	
  
the	
  residual	
  error	
  to	
  be	
  a	
  minimum.	
  

We	
  can	
  show	
  that	
  least-­‐squares	
  is	
  in9mately	
  related	
  to	
  
Gaussian	
  probability	
  distribu5on.	
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e.g.,	
  Tarantola	
  (2005)	
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More	
  generally,	
  there	
  is	
  a	
  class	
  of	
  problems	
  based	
  on	
  
Lp	
  norms	
  with	
  associated	
  probability	
  distribu9ons	
  
that	
  are	
  bener	
  than	
  the	
  familiar	
  L2	
  norm	
  (Gaussian)	
  
to	
  handle	
  certain	
  types	
  of	
  situa9ons,	
  e.g.,	
  outliers.	
  



The	
  Kalman	
  Filter:	
  Problem	
  

X(0 = 4>(t, U)x(to) + ft' <f(<, r)G(r)u(r)dr (3) 

where we call <I>(t, <o) the transition matrix of (1). The transition 
matrix is a nonsingular matrix satisfying the differential equation 

d®/dt = F(t)<I> (4) 

(any such matrix is a fundamental matrix [23, Chapter 3]), made 
unique by the additional requirement that, for all to, 

*&(to, k) = I = unit matrix (5) 

The following properties are immediate by the existence and 
uniqueness of solutions of (1): 

k) = 4>(«o, <i) for all to, t, (6) 

k) = 4>(/2, <i)«»(<i> k) for all to, U, h (7) 

If F = const, then the transition matrix can be represented by 
the well-known formula 

�� �

4>(t, k) = exp F(t - t0) = IF(< - fc)]'/*' ( 8 ) 
i = 0 

which is quite convenient for numerical computations. In this 
special case, one can also express analytically in terms of the 
eigenvalues of F, using either linear algebra [22] or standard 
transfer-function techniques [14]. 

In some eases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(0 = «!>(<; x, to; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x = x(to) at time k under the action of a fixed forcing 
function u(t). For simplicity, we refer to <j> as the motion of the 
dynamical system 

4 Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(Ai) The message is a random process x(t) generated by the 
model 

dx/dt = F(t)x + G(t)u(t) (10) 

The observed signal is 

z(t) = y (t) + v( t ) = H « ) x ( t ) + v(t ) ( i i ; 

The functions u(t), v(t) in (10-11) are independent random proc-
esses (white noise) with identically zero means and covariance 
matrices 

c o v [U(0, U(T)] = Q ( I ) - 8 ( 1 - T) 

cov [v(0, v(r)] = R(t)-5(t - T) for all t, r (12) 

cov [u(t), v(r)] = 0 

where 8 is the Dirac delta function, and Q(t), R(t) are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(t) uniquely, it is necessary 

to add a further assumption. This may be done in two different 
ways: 

(A3) The dynamical system (10) has reached "steady-state" 
under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
constant, then x(i) is a stationary random process—this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon-
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems. 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
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under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
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venient in some cases. For instance, it is not satisfied in Example 
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Moreover, the representation of random functions as generated 
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known. 
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since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 
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differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
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Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 
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(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
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(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
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(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
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eigenvalues of F, using either linear algebra [22] or standard 
transfer-function techniques [14]. 

In some eases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(0 = «!>(<; x, to; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x = x(to) at time k under the action of a fixed forcing 
function u(t). For simplicity, we refer to <j> as the motion of the 
dynamical system 

4 Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(Ai) The message is a random process x(t) generated by the 
model 

dx/dt = F(t)x + G(t)u(t) (10) 

The observed signal is 

z(t) = y (t) + v( t ) = H « ) x ( t ) + v(t ) ( i i ; 

The functions u(t), v(t) in (10-11) are independent random proc-
esses (white noise) with identically zero means and covariance 
matrices 

c o v [U(0, U(T)] = Q ( I ) - 8 ( 1 - T) 

cov [v(0, v(r)] = R(t)-5(t - T) for all t, r (12) 

cov [u(t), v(r)] = 0 

where 8 is the Dirac delta function, and Q(t), R(t) are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(t) uniquely, it is necessary 

to add a further assumption. This may be done in two different 
ways: 

(A3) The dynamical system (10) has reached "steady-state" 
under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
constant, then x(i) is a stationary random process—this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon-
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems. 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
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Introduction 

 
AN IMPORTANT class of theoretical and practical 

problems in communication and control is of a statistical nature. 
Such problems are: (i) Prediction of random signals; (ii) separa- 
tion of random signals from random noise; (iii) detection of 
signals of known form (pulses, sinusoids) in the presence of 
random noise. 

In his pioneering work, Wiener [1]3 showed that problems (i) 
and (ii) lead to the so-called Wiener-Hopf integral equation; he 
also gave a method (spectral factorization) for the solution of this 
integral equation in the practically important special case of 
stationary statistics and rational spectra. 

Many extensions and generalizations followed Wiener’s basic 
work. Zadeh and Ragazzini solved the finite-memory case [2]. 
Concurrently and independently of Bode and Shannon [3], they 
also gave a simplified method [2) of solution.  Booton discussed 
the nonstationary Wiener-Hopf equation [4]. These results are 
now in standard texts [5-6]. A somewhat different approach along 
these main lines has been given recently by Darlington [7]. For 
extensions to sampled signals, see, e.g., Franklin [8], Lees [9]. 
Another approach based on the eigenfunctions of the Wiener-
Hopf equation (which applies also to nonstationary problems 
whereas the preceding methods in general don’t), has been 
pioneered by Davis [10] and applied by many others, e.g., 
Shinbrot [11], Blum [12], Pugachev [13], Solodovnikov [14].  

In all these works, the objective is to obtain the specification of 
a linear dynamic system (Wiener filter) which accomplishes the 
prediction, separation, or detection of a random signal.4 

——— 
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2 7212 Bellona Ave.  
3 Numbers in brackets designate References at end of paper.  
4 Of course, in general these tasks may be done better by nonlinear 

filters. At present, however, little or nothing is known about how to obtain 
(both theoretically and practically) these nonlinear filters.  
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Present methods for solving the Wiener problem are subject to 

a number of limitations which seriously curtail their practical 
usefulness: 

(1) The optimal filter is specified by its impulse response. It is 
not a simple task to synthesize the filter from such data. 

(2) Numerical determination of the optimal impulse response is 
often quite involved and poorly suited to machine computation. 
The situation gets rapidly worse with increasing complexity of 
the problem. 

(3) Important generalizations (e.g., growing-memory filters, 
nonstationary prediction) require new derivations, frequently of 
considerable difficulty to the nonspecialist. 

(4) The mathematics of the derivations are not transparent. 
Fundamental assumptions and their consequences tend to be 
obscured. 

This paper introduces a new look at this whole assemblage of 
problems, sidestepping the difficulties just mentioned. The 
following are the highlights of the paper: 

(5) Optimal Estimates and Orthogonal Projections. The 
Wiener problem is approached from the point of view of condi- 
tional distributions and expectations. In this way, basic facts of 
the Wiener theory are quickly obtained; the scope of the results 
and the fundamental assumptions appear clearly. It is seen that all 
statistical calculations and results are based on first and second 
order averages; no other statistical data are needed. Thus 
difficulty (4) is eliminated. This method is well known in 
probability theory (see pp. 75–78 and 148–155 of Doob [15] and 
pp. 455–464 of Loève [16]) but has not yet been used extensively 
in engineering. 

(6) Models for Random Processes. Following, in particular, 
Bode and Shannon [3], arbitrary random signals are represented 
(up to second order average statistical properties) as the output of 
a linear dynamic system excited by independent or uncorrelated 
random signals (“white noise”). This is a standard trick in the 
engineering applications of the Wiener theory [2–7]. The 
approach taken here differs from the conventional one only in the 
way in which linear dynamic systems are described. We shall 
emphasize the concepts of state and state transition; in other 
words, linear systems will be specified by systems of first-order 
difference (or differential) equations. This point of view natural 
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The classical filtering and prediction problem is re-examined using the Bode-
Shannon representation of random processes and the “state transition” method of 
analysis of dynamic systems.  New results are: 

(1) The formulation and methods of solution of the problem apply without modifica- 
tion to stationary and nonstationary statistics and to growing-memory and infinite- 
memory filters.  

(2) A nonlinear difference (or differential) equation is derived for the covariance 
matrix of the optimal estimation error.  From the solution of this equation the co- 
efficients of the difference (or differential) equation of the optimal linear filter are ob- 
tained without further calculations. 

(3) The filtering problem is shown to be the dual of the noise-free regulator problem. 
The new method developed here is applied to two well-known problems, confirming 

and extending earlier results.  
The discussion is largely self-contained and proceeds from first principles; basic 

concepts of the theory of random processes are reviewed in the Appendix. 
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A nonlinear differential equation of the Riccati type is derived for the covariance 
matrix of the optimal filtering error. The solution of this "variance equation" com-
pletely specifies the optimal filter for either finite or infinite smoothing intervals and 
stationary or nonstationary statistics. 

The variance equation is closely related to the Hamiltonian (canonical) differential 
equations of the calculus of variations. Analytic solutions are available in some cases. 
The significance of the variance equation is illustrated by examples which duplicate, 
simplify, or extend earlier results in this field. 

The Duality Principle relating stochastic estimation and deterministic control 
problems plays an important role in the proof of theoretical results. In several examples, 
the estimation problem and its dual are discussed side-by-side. 

Properties of the variance equation are of great interest in the theory of adaptive 
systems. Some aspects of this are considered briefly. 

1 Introduction 

A T PRESENT, a nonspecialist might well regard the 
Wiener-Kolmogorov theory of filtering and prediction [1, 2]3 as 
"classical' —in short, a field where the techniques are well 
established and only minor improvements and generalizations 
can be expected. 

That this is not really so can be seen convincingly from recent 
results of Shinbrot [3], Stceg [4], Pugachev [5, 6], and Parzen [7]. 
Using a variety of time-domain methods, these investigators have 
solved some long-stauding problems in nonstationary filtering and 
prediction theory. We present here a unified account of our own 
independent researches during the past two years (which overlap 
with much of the work [3-71 just mentioned), as well as numerous 
new results. We, too, use time-domain methods, and obtain 
major improvements and generalizations of the conventional 
Wiener theory. In particular, our methods apply without 
modification to multivariate problems. 

The following is the historical background of this paper. 
In an extension of the standard Wiener filtering problem, Follin 

[8] obtained relationships between time-varying gains and error 
variances for a given circuit configuration. Later, Hanson [9] 
proved that Follin's circuit configuration was actually optimal 
for the assumed statistics; moreover, he showed that the differen-
tial equations for the error variance (first obtained by Follin) 
follow rigorously from the Wiener-Hopf equation. These results 
were then generalized by Bucy [10], who found explicit rela-
tionships between the optimal weighting functions and the error 
variances; he also gave a rigorous derivation of the variance 
equations and those of the optimal filter for a wide class of non-
stationary signal and noise statistics. 

Independently of the work just mentioned, Kalman [11] gave 

1 This research was partially supported by the United States Air 
Force under Contracts AF 49(638)-382 and AF 33(616)-6952 and by 
the Bureau of Naval Weapons under Contract NOrd-73861. 

2 7212 Bellona Avenue. 
3 Numbers in brackets designate References at the end of paper. 
Contributed by the Instruments and Regulators Division of THE 

A M E R I C A N S O C I E T Y OP M E C H A N I C A L E N G I N E E R S and presented at 
the Joint Automatic Controls Conference, Cambridge, Mass., 
September 7-9, I960. Manuscript received at ASME Headquarters, 
May 31, 1960 Paper No. GO—JAC-12. 

a new approach to the standard filtering and prediction problem. 
The novelty consisted in combining two well-known ideas: 

(i) the "state-transition" method of describing dynamical sys-
tems [12-14], and 

(ii) linear filtering regarded as orthogonal projection in Hilbert 
space [15, pp. 150-155]. 

As an important by-product, this approach yielded the Duality 
Principle [11, 16] which provides a link between (stochastic) 
filtering theory and (deterministic) control theory. Because of 
the duality, results on the optimal design of linear control systems 
[13, 16, 17] are directly applicable to the Wiener problem. Dual-
ity plays an important role in this paper also. 

When the authors became aware of each other's work, it was 
soon realized that the principal conclusion of both investigations 
was identical, in spite of the difference in methods: 

Rather than to attack the Wiener-Hopf integral equation directly, 
it is better to convert it into a nonlinear differential equation, whose 
solution yields the covariance matrix of the minimum filtering error, 
which in turn contains all necessary information for the design of the 
optimal filter. 

2 Summary of Results: Description 
The problem considered in this paper is stated precisely in 

Section 4. There are two main assumptions: 
(Ai) A sufficiently accurate model of the message process is 

given by a linear (possibly time-varying) dynamical system 
excited by white noise. 

(A2) Every observed signal contains an additive white noise 
component. 

Assumption (Aj) is unnecessary when the random processes in 
question are sampled (discrete-time parameter); see [11]. Even 
in the continuous-time case,��� �� is no real restriction since it can 
be removed in various ways as will be shpwn in a future paper. 
Assumption (Ai), however, is quite basic; it is analogous to but 
somewhat less restrictive than the assumption of rational spectra 
in the conventional theory. 

Within these assumptions, we seek the best linear estimate of 
the message based on past data lying in either a finite or infinite 
time-interval. 

The fundamental relations of our new approach consist of five 
equations: 
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1t is easy to verify that the right-hand side of (60) vanishes for 
this set of��H�B� by Theorem 5, this cannot happen for any other 
set. Hence the solution of the stationary Wiener problem is com-
plete. It is interesting to note that the conventional procedure 
would require here the spectral factorization of a two-by-two 
matrix which is very much more difficult algebraically than by 
the present method. 

The infinitesimal transition matrix of the optimal filter is given 
by 
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The natural frequency of the optimal filter is 

w = |X(Fopt)| = V a 

and the damping ratio is 

r = | R e X ( M / « . 

The quantities a and P can be regarded as signal-to-noise ratios. 
Since all parameters of the optimal filter depend only on these 
ratios, there is a possibility of building an adaptive filter once 
means of experimentally measuring a and P are available. An in-
vestigation of this sort was carried out by Bucy [31] in the simpli-
fied case when hn = P = 0. 

12 Problems Related to Adaptive Systems 
The generality of our results should be of considerable useful-

ness in the theory of adaptive systems, which is as yet in a primi-
tive stage of development. 

An adaptive system is one which changes its parameters in ac-
cordance with measured changes in its environment. In the 
estimation problem, the changing environment is reflected in the 
time-dependence of F, G, H, Q, R. Our theory shows that such 
changes affect only the values of the parameters but not the 
structure of the optimal filter. This is what one would expect 
intuitively and we now have also a rigorous proof. Under ideal 
circumstances, the changes in the environment could be detected 
instantaneously and exactly. The adaptive filter would then 
behave as required by the fundamental equations (I-1V). In 
other words, our theory establishes a basis of comparison between 
actual and ideal adaptive behavior. It is clear therefore that 
a fundamental problem in the theory of adaptive systems is the 
further study of properties of the variance equation (IV). 

13 Conclusions 
One should clearly distinguish between two aspects of the esti-

mation problem: 

(1) The theoretical aspect. Here interest centers on: 

(1) The general form of the solution (see Fig. 1). 
(ii) Conditions which guarantee a priori the existence, physical 

realizability, and stability of the optimal filter. 
(iii) Characterization of the general results in terms of some 

simple quantities, such as signal-to-noise ratio, information rate, 
bandwidth, etc. 

An important consequence of the time-domain approach is that 
these considerations can be completely divorced from the as-
sumption of stationarity which has dominated much of the think-
ing in the past. 

(2) The computational aspect. The classical (more accurately, 
old-fashioned) view is that a mathematical problem is solved if 
the solution is expressed by a formula. It is not a trivial matter, 
however, to substitute numbers in a formula. The current litera-
ture on the Wiener problem is full of semirigorously derived 
formulas which turn out to be unusable for practical computa-
tion when the order of the system becomes even moderately large. 
The variance equation of our approach provides a practically 
useful and theoretically "clean" technique of numerical computa-
tion. Because of the guaranteed convergence of these equations, 
the computational problem can be considered solved, except for 
purely numerical difficulties. 

Some open problems, which we intend to treat in the near 
future, are: 

(i) Extension of the theory to include nonwhite noise. As 
mentioned in Section 2, this problem is already solved in the dis-
crete-time case [11], and the only remaining difficulty is to get a 
convenient canonical form in the continuous-time case. 

(ii) General study of the variance equations using Lyapunov 
functions. 

(iii) Relations with the calculus of variations and information 
theory. 
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This problem was studied by Hanson [9] and Bucy [25, 26]. 
The dual problem is very similar to Examples 3 and 4. 

7 Summary of Results: Mathematics 
Here we present the main results of the paper in precise mathe-

matical terms. At the present stage of our understanding of the 
problem, the rigorous proof of these facts is quite complicated, 
requiring advanced and unconventional methods; they are to be 
found in Sections 8-10. After reading this section, one may pass 
without loss of continuity to Section 11 which contains the solu-
tions of the examples. 

(1) Canonical form of the optimal filter. The optimal estimate 
x(i|0 is generated by a linear dynamical system of the form 

dx(t\t)/dt = F(i)*(«|0 + K(0 i« |<) 

z(l|<) = z(0 - H («8« |0 

The initial state x(«<,|fo,) of (I) is zero. 

For optimal extrapolation, we add the relation 

x«,!<) = ®(fc, 0 * « | 0 ( k ^ t ) (V) 

No similarly simple formula is known at present for interpolation 
(k < <)• 

The block diagram of (I) and (V) is shown in Fig. 9. The 
variables appearing in this diagram are vectors and the "boxes" 
represent matrices operating on vectors. Otherwise (except for 
the noncommutativity of matrix multiplication) such generalized 
block diagrams are subject to the same rules as ordinary block 

diagrams. The fat lines indicating direction of signal flow serve 
as a reminder that we are dealing with multiple rather than 
single signals. 

The optimal filter (I) is a feedback system. It is obtained by 
taking a copy of the model of the message process (omitting the 
constraint at the input), forming the error signal z(<|i) and feed-
ing the error forward with a gain K(<). Thus the specification of 
the optimal filter is equivalent to the computation of the optimal 
time-varying gains «(()• This result is general and does not de-
pend on constancy of the model. 
(2) Canonical form for the dynamical system governing the 

optimal error. Let 

i(t\l) = x(i) - x(t|0 (22) 

Except for the way in which the excitations enter the optimal 
error, x((|0 is governed by the same dynamical Bystem as x(t\t): 

dx(t\l)/di = F(<)x(«|0 + G(i)u(i) - K(0[v«) 
+ H«)x«l<)] (II) 

See Fig. 10. 
(3) Optimal gain. Let us introduce the abbreviation: 

P(0 = cov[x«|<), x(«|i)l (23) 

Then it can be shown that 

K(i) = P(<)H '(i)R-»(0 (III) 

(4) Variance equation. The only remaining unknown is P(i). 
It can be shown that P(i) must be a solution of the matrix dif-
ferential equation 

dP/dt = F(«)P + PF'(<) - PH'(«)R-1(«)H(0P 
+ G « Q ( 0 G ' ( 0 (IV) 
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This is the variance equation; it is a system of n(n + l ) /2 4 non-
linear differential equations of the first order, and is of the Riccati 
type well known in the calculus of variations [17, 18]. 

(5) Existence of solutions of the variance equation. Given any 
fixed initial time to and a nonnegative definite matrix Po, (IV) has 
a unique solution 

P(t) = n ( t ; P0, U>) (24) 

defined for all |t — to| sufficiently small, which takes on the value 
P(to) = Po at t = <o- This follows at once from the fact that (IV) 
satisfies a Lipschitz condition [21]. 

Since (IV) is nonlinear, we cannot of course conclude without 
further investigation that a solution P(t) exists for all t [21]. By 
taking into account the problem from which (IV) was derived, 
however, it can be shown that P(t) in (24) is defined for all t ^ to. 

These results can be summarized by the following theorem, 
which is the analogue of Theorem 3 of [11] and is proved in 
Section 8: 

THEOREM 1. Under Assumptions (A,), (A2), (A,'), the 
solution of the optimal estimation problem with to> — °> is given by 
relations (I-V). The solution P(t) of (IV) is uniquely determined 
for all t Zz to by the specification of 

Po = cov[x(to), x(to)]; 

knowledge of P(t) in turn determines the optimal gain K(<)- The 
initial state of the optimal filter is 0 . 

(6) Variance of the estimate of a coslate. From (23) we have 
immediately the following formula for (15): 

Six*, x « | t ) l ! = ||x*||V(i) (25) 

(7) Analytic solution of the variance equation. Because of the 
close relationship between the Riccati equation and the calculus 
of variations, a closed-form solution of sorts is available for (IV). 
The easiest way of obtaining it is as follows [17]: 

Introduce the quadratic HamiUonian function 

3C(x, w, I) = - ( ' A ) ! ! G ' « ) X | | 2 Q W 

- w'F'(0x + ( ' / O l l H t O w l l V w (26) 

and consider the associated canonical differential equations 

dx/dt = aae/dw5 = - F ' ( 0 x + H ' (0R- ' ( 0H(0w ] 
\ (27) 

dw/dt dUC/dx = G(i)Q(t)G'(«)x + F(t)w J 

We denote the transition matrix of (27) by 

4 This is the number of distinct elements of the symmetric matrix 
P(0. 

• The notation &3C/3w means the gradient of the scalar 3C with 
respect to the vector w. 

In Section 10 we shall prove 
THEOREM 2. The solution of (IV) for arbitrary nonnegative 

definite, symmetric Po and all t ^ to can be represented by the formula 

n ( t ; Po,���� = [ 0 m « ,� ����� ©« (« , MPo] ' [ @ n « ,� ����
+ ©.*(<, <o)Po] - 1 (29) 

Unless all matrices occurring in (27) are constant, this result 
simply replaces one difficult problem by another of similar dif-
ficulty, since only in the rarest cases can @(t, U) be expressed in 
analytic form. Something has been accomplished, however, since 
we have shown that the solution of nonconstant estimation problems 
involves precisely the same analytic difficulties as the solution of linear 
differential equations with variable coefficients. 

(8) Existence of steady-state solution. If the time-interval over 
which data are available is infinite, in other words, if to = — 
Theorem 1 is not applicable without some further restriction. 

For instance, if H(i) = 0, the variance of x is the same as the 
variance of x; if the model (10-11) is unstable, then x(t) defined 
by (13) does not exist and the estimation problem is meaningless. 

The following theorem, proved in Section 9, gives two sufficient 
conditions for the steady-state estimation problem to be meaning-
ful. The first is the one assumed at the very beginning in the 
conventional Wiener theory. The second condition, which we in-
troduce here for the first time, is much weaker and more "natural" 
than the first; moreover, it is almost a necessary condition as well. 

THEOREM 3. Denote the solutions of (IV) as in (24). Then 
the limit 

lim I I ( i ; 0, to) = P(t) (30) 
U—>— ™ 

exists for all t and is a solution of (IV) if either 
(At) the model (10-11) is uniformly asymptotically stable; or 
( A / ) the model (10-11) is "completely observable" [17], that is, 

for all t there is some to(t) < t such that the matrix 

M(to, t) = f ' • ' ( r , <)H'(r)H(r)«&(r, t)dr (31) 

is positive definite. (See [21] for the definition of uniform asymptotic 
stability.) 

Remarks, (g) P(f) is the covariance matrix of the optimal error 
corresponding to the very special situation in which (i) an arbi-
trarily long record of past measurements is available, and (ii) the 
initial state x(<o) was known exactly. When all matrices in 
(10-12) are constant, then so is also P—this is just the classical 
Wiener problem. In the constant case, P is an equilibrium 
state of (IV) (i.e., for this choice of P, the right-hand side of (IV) 
is zero). In general, P(I) should be regarded as a moving equi-
librium point of (IV), see Theorem 4 below. 

(h) The matrix M(<c, t) is well known in mathematical statistics. 
It is the information matrix in the sense of R. A. Fisher [20] 
corresponding to the special estimation problem when (i) u(t) = 0 
and (ii) v(t) = gaussian with unit covariance matrix. In this 
case, the variance of any unbiased estimator p,(t) of [x,* x(t)] 
satisfies the well-known Cramer-Rao inequality [20] 
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  circumlunar	
  naviga9on	
  and	
  control	
  of	
  the	
  Apollo	
  space	
  capsule”.	
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Figure 2. 

From	
  Schmidt	
  &	
  McLean	
  (1962)	
  

The	
  ar9cle	
  describes	
  how:	
  
	
  
-­‐  The	
  need	
  for	
  something	
  like	
  the	
  Kalman	
  filter	
  arose	
  
-­‐  Extensions	
  required	
  to	
  Kalman’s	
  work	
  for	
  use	
  in	
  real-­‐life	
  problems	
  
-­‐  Various	
  	
  stability	
  tricks	
  were	
  designed	
  and	
  employed	
  
-­‐  The	
  need	
  for	
  a	
  	
  stable	
  reformula9on	
  	
  leading	
  to	
  the	
  square-­‐root	
  KF	
  
-­‐  Various	
  efficient	
  formula9ons	
  derived	
  to	
  fit	
  the	
  compu9ng	
  
	
  	
  	
  	
  	
  	
  real-­‐9me-­‐applica9on	
  constraints	
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TRACKING 
AND COMMUNICATIONS 
AT THE MOON 

VISIBILITY CONTOURS FOR THE APOLLO 85-FT ANTENNAS 

I 

TRACKING 
AND COMMUNICATIONS 
AT THE MOON 

VISIBILITY CONTOURS FOR THE APOLLO 85-FT ANTENNAS From	
  F.	
  O.	
  Vonbun,	
  (1966)	
  

NASA	
  worldwide	
  tracking	
  network	
  (c.	
  1965)	
  	
  

Source	
  hnp://history.nasa.gov/SP-­‐4002/p2b.htm	
  



Discovery	
  of	
  the	
  Kalman	
  Filter	
  as	
  a	
  Prac9cal	
  Tool	
  for	
  
Aerospace	
  and	
  Industry	
  	
  

McGee	
  &	
  Schmidt	
  (1985)	
  

Support	
  for	
  the	
  Apollo	
  Mission	
  (from	
  mid-­‐1962	
  to	
  mid-­‐1964)	
  
Three	
  areas	
  of	
  study	
  were	
  the	
  focus:	
  	
  
	
  	
  (1)	
  effect	
  of	
  modeling	
  errors	
  and	
  subop9mal	
  space	
  vehicle	
  trajectory.	
  
	
  	
  (2)	
  effect	
  of	
  short-­‐word	
  length	
  in	
  the	
  airborne	
  computers.	
  
	
  	
  (3)	
  effect	
  of	
  combining	
  ground-­‐base	
  and	
  on-­‐board	
  observa9onal	
  data.	
  	
  	
  

The	
  first	
  stability	
  issues	
  with	
  the	
  Kalman-­‐Schmidt	
  filter	
  were	
  encountered	
  while	
  studying	
  (3).	
  
Earlier	
  inves9ga9ons	
  apparently	
  involved	
  systems	
  that	
  were	
  less	
  sensi9ve	
  to	
  nonlineari9es.	
  

Part	
  of	
  the	
  stability	
  issue	
  was	
  anributed	
  to	
  computer	
  round-­‐off	
  problems.	
  Ini9al	
  anempts	
  
to	
  address	
  the	
  issue	
  involved	
  (the	
  now	
  familiar)	
  forcing	
  P	
  to	
  be	
  symmetric	
  by:	
  	
  
	
  	
  (a)	
  using	
  only	
  its	
  upper	
  (or	
  lower)	
  triangle	
  to	
  form	
  a	
  symmetric	
  matrix.	
  
	
  	
  (b)	
  averaging	
  its	
  off-­‐diagonal	
  terms.	
  
	
  	
  (c)	
  applying	
  (b),	
  then	
  compu9ng	
  correla9ons	
  coeffs,	
  if	
  any	
  >	
  1,	
  stop.	
  
	
  	
  (d)	
  adding	
  a	
  small	
  number	
  to	
  the	
  diagonal	
  of	
  P	
  aver	
  measurement	
  and	
  9me	
  update	
  steps.	
  

About	
  this	
  9me	
  is	
  when	
  Joseph’s	
  update	
  formula	
  came	
  into	
  play.	
  	
  
During	
  this	
  research	
  they	
  learned:	
  
	
  	
  (1)	
  how	
  to	
  handle	
  uncertain9es	
  and	
  biases	
  
	
  	
  (2)	
  when	
  the	
  error	
  cov	
  P	
  is	
  too-­‐op9mis9c	
  it	
  mis-­‐represents	
  errors,	
  leading	
  to	
  filter	
  divergence	
  
	
  	
  (3)	
  ground-­‐base	
  radar	
  obs	
  were	
  more	
  effec9ve,	
  with	
  onboard	
  correc9ons	
  only	
  used	
  as	
  backup	
  



Source	
  hnp://en.wikipedia.org/wiki/Punched_card	
  

Source	
  hnp://www-­‐03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH704.html	
  

Ini5al	
  Kalman	
  filter	
  studies	
  used	
  
IBM	
  704	
  Data	
  Processing	
  System	
  

Source	
  hnp://www-­‐03.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV4002.html	
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Back	
  in	
  the	
  days	
  …	
   -­‐  Computer	
  programs	
  were	
  “typed”	
  in	
  punch	
  cards	
  
-­‐  Debugging	
  was	
  tough!	
  
-­‐  On	
  the	
  IBM	
  704	
  (at	
  Ames)	
  matrix	
  double	
  indexing	
  
	
  	
  	
  	
  	
  was	
  slow;	
  programs	
  had	
  to	
  be	
  rewrinen	
  with	
  single	
  
	
  	
  	
  	
  	
  indexing.	
  
-­‐  IBM	
  704:	
  36-­‐bit	
  arithme9c;	
  Apollo	
  onboard:	
  15-­‐bit	
  

Apollo	
  11	
  Mission	
  Control	
  
IBM’s	
  Real-­‐Time	
  Computer	
  	
  
Complex	
  at	
  NASA,	
  Houston	
  

hnp://www-­‐03.ibm.com/ibm/history/ibm100/us/en/icons/apollo/breakthroughs/	
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Source	
  hnp://history.nasa.gov/SP-­‐4002/p1b.htm	
  

Applica9on	
  of	
  The	
  Filter	
  to	
  the	
  Agena	
  Program	
  (c.	
  1961)	
  

Gemini	
  Docking	
  

Purpose:	
  validate	
  the	
  Agena	
  upper	
  stage	
  rendezvous	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  docking	
  during	
  Project	
  Gemini.	
  
Observa5ons:	
  downrange	
  sta9ons	
  &	
  in-­‐flight	
  telemetry.	
  
Model:	
  equa9ons	
  of	
  mo9on	
  of	
  the	
  vehicle	
  predic9ng	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  posi9on	
  and	
  velocity.	
  
Es5mator:	
  measurement	
  biases,	
  loca9on,	
  coefficients	
  of	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  propulsion	
  model	
  for	
  the	
  thrust	
  of	
  Agena	
  upper	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  stage.	
  
Resul5ng	
  techniques	
  following	
  from	
  study:	
  
	
  	
  -­‐	
  Quality	
  control:	
  data-­‐rejected	
  based	
  on	
  size	
  of	
  residual.	
  
	
  	
  -­‐	
  KF	
  used	
  as	
  data	
  compression	
  algorithm.	
  
	
  	
  -­‐	
  Effect	
  of	
  nonlineari9es	
  handled	
  with	
  backward	
  integra9on	
  
	
  	
  	
  	
  	
  and	
  forward	
  filtering.	
  	
  	
  
	
  	
  -­‐	
  KF	
  used	
  to	
  es9mate	
  parameters	
  in	
  measurement	
  and	
  model.	
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McGee	
  &	
  Schmidt	
  (1985)	
  

The	
  square-­‐root	
  filter	
  

S9ll	
  having	
  stability	
  issues	
  Schmidt,	
  knowing	
  about	
  the	
  recently	
  developed	
  algorithm	
  by	
  PoLer,	
  	
  
implemented	
  the	
  first	
  square-­‐root	
  filtering	
  for	
  real	
  on-­‐board	
  aircrav	
  applica9ons.	
  Poner’s	
  	
  
procedure	
  uses	
  a	
  Cholesky	
  factoriza9on	
  of	
  the	
  error	
  covariance	
  matrix,	
  which	
  by	
  construc9on	
  	
  
maintains	
  posi9veness,	
  and	
  results	
  in	
  a	
  more	
  stable	
  implementa9on	
  then	
  the	
  more	
  direct	
  	
  
Extended	
  KF..	
  	
  

Schmidt	
  and	
  his	
  group	
  con9nued	
  to	
  applied	
  the	
  extended	
  KF	
  to	
  various	
  naviga9on	
  problems:	
  
	
  	
  	
  	
  	
  	
  (a)	
  the	
  development	
  of	
  the	
  C-­‐5A	
  aircrav	
  naviga9on	
  system	
  
	
  	
  	
  	
  	
  	
  (b)	
  flight	
  test	
  of	
  the	
  RAINPAL	
  system	
  for	
  approach	
  and	
  landing	
  	
  
	
  

The	
  group	
  of	
  Eldon	
  Hall	
  implemented	
  Poner’s	
  algorithm	
  in	
  the	
  Apollo	
  Guidance	
  Computer.	
  

Poner’s	
  original	
  algorithm	
  neglects	
  model	
  error.	
  Various	
  generaliza9ons	
  become	
  available	
  in	
  	
  
the	
  late	
  60s	
  and	
  during	
  the	
  70s	
  that	
  by	
  then	
  took	
  into	
  account	
  factoriza9ons	
  the	
  model	
  error	
  	
  
covariance	
  –	
  amount	
  the	
  great	
  contributors	
  where	
  Carlson,	
  Bierman,	
  &	
  Thornton.	
  The	
  most	
  	
  
reliable	
  and	
  computa9onally	
  efficient	
  schemes	
  are	
  based	
  on	
  a	
  U-­‐D	
  decomposi5on	
  of	
  the	
  	
  
error	
  covariance	
  and	
  a	
  modified	
  Gram-­‐Schmidt	
  orthogonaliza5on.	
  	
  



Predic9ng	
  the	
  Weather	
  

From	
  First	
  Principles	
  to	
  the	
  KF	
  for	
  NWP	
  



Meteorology	
  &	
  Weather	
  Forecas9ng	
  

There	
  is	
  a	
  number	
  of	
  ar9cles	
  that	
  
tell	
  the	
  history	
  of	
  meteorology,	
  
weather	
  forecas9ng,	
  &	
  of	
  those	
  	
  
who	
  pioneered	
  the	
  field.	
  	
  

Mathema3cs	
  Today,	
  1978,	
  L.	
  A.	
  Steen,	
  Ed.127-­‐152	
  



From	
  Thompson;	
  in	
  Mathema3cs	
  Today	
  1978	
  

Meteorology	
  &	
  Weather	
  Forecas9ng	
  

Why	
  did	
  it	
  take	
  so	
  long	
  for	
  meteorology	
  
to	
  become	
  a	
  science?	
  

Note:	
  thought	
  the	
  system	
  of	
  equa9ons	
  becomes	
  formally	
  complete	
  with	
  six	
  equa9ons,	
  	
  for	
  it	
  to	
  describe	
  a	
  meaningful	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  atmosphere,	
  it	
  also	
  needs	
  a	
  seventh	
  eq.	
  provided	
  by	
  the	
  Second	
  Law	
  of	
  Thermodynamics	
  –	
  leading	
  to	
  inclusion	
  of	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  water-­‐vapor.	
  



Meteorology	
  &	
  Weather	
  Forecas9ng	
  

Vilhelm	
  Bjerknes	
  
From	
  www.uib.no	
  

“If	
  it	
  is	
  true,	
  as	
  every	
  scien3st	
  believes,	
  that	
  atmospheric	
  states	
  
develop	
  from	
  the	
  preceding	
  ones	
  according	
  to	
  physical	
  laws,	
  	
  
then	
  it	
  is	
  apparent	
  that	
  the	
  necessary	
  and	
  sufficient	
  condi3ons	
  
for	
  the	
  ra3onal	
  solu3on	
  of	
  forecas3ng	
  problems	
  are	
  the	
  following:	
  
	
  
1.  A	
  sufficiently	
  accurate	
  knowledge	
  of	
  the	
  state	
  of	
  the	
  	
  
atmosphere	
  at	
  the	
  ini3al	
  3me.	
  
2.  A	
  sufficiently	
  accurate	
  knowledge	
  of	
  the	
  laws	
  according	
  to	
  	
  
which	
  one	
  state	
  of	
  the	
  atmosphere	
  develops	
  from	
  another.“	
  

Bjerknes	
  (1904;	
  	
  Meteor.	
  Zeitschrij)	
  

Lewis	
  F.	
  Richardson	
  
From	
  www.wmo.int	
  

“Perhaps	
  some	
  day	
  in	
  the	
  dim	
  future	
  it	
  will	
  be	
  possible	
  
to	
  advance	
  the	
  computa3ons	
  faster	
  than	
  the	
  weather	
  
advances	
  and	
  at	
  a	
  cost	
  less	
  than	
  the	
  saving	
  to	
  mankind	
  
due	
  to	
  the	
  informa3on	
  gained.	
  But	
  that	
  is	
  a	
  dream.”	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Lewis	
  Fry	
  Richardson,	
  1922.	
  	
  	
  

Richarson’s	
  checkerboard	
  grid	
  
with	
  p	
  and	
  wind	
  staggered	
  at	
  
shaded	
  and	
  clear	
  boxes.	
  



Objec9ve	
  Analysis	
  and	
  
The	
  Varia9onal	
  Principle	
  (c.	
  1950s)	
  

Yoshikazu	
  (“Yoshi”)	
  Sasaki	
  

Subjec9ve	
  (lev)	
  and	
  two	
  objec9ve	
  analyses	
  of	
  700	
  mb	
  height	
  at	
  1500	
  GCT	
  
on	
  25	
  March	
  1947;	
  From	
  Panofsky	
  (1949).	
  	
  

The	
  objec9ve	
  analysis	
  amounts	
  
to	
  a	
  third-­‐order	
  polynomial	
  fit	
  

It	
  was	
  quickly	
  realized	
  that	
  simple	
  objec9ve	
  analysis	
  techniques	
  would	
  
have	
  to	
  be	
  made	
  consistent	
  with	
  the	
  physical	
  constrains	
  underlying	
  the	
  
meteorological	
  variables.	
  Sasaki	
  proposed	
  using	
  the	
  varia9onal	
  principle	
  
to	
  accomplish	
  consistency.	
  

73 Journ. Met. Soc. Japan, Vol. 36, No. 3, 1958

When the fi's are not independent, equation 
(2) furnishes a relation between observed and 
modified values of the elements. 

 In order to obtain a solution, a second 
relation must exist between pairs of fi values. 
In the case where the fi values are related 
this condition may be expressed generally as

where Fj represents j functional relations 
between the fi values. Some of these function-
al relations are given by the quasi-geostrophic 
wind equation, the thermal wind relation, the 
balance equation and the tendency equation. 

 Equations (2) and (3) form the basis for 
determining the modified values of the elements 
in a volume considered. The values calcu-
lated in this way depend on the functional 
form of equation (3), which must be selected 
basing on reasonable physical considerations 
of the problem at hand. Two such cases are 
considered here. In Case I the functional re-
lations given by equations (3) are in the form 
of the quasi-geostrophic and thermal wind 
equations. In Case II the functional relations 
are the balance equation and the conditions 
of non-divergence, (div v=0, div v=0), which 
corresponds to an equivalent barotropic atmos-
phere.

3. Case I. Quasi-geostrophic and thermal 

   wind condition 

 It is generally accepted that the flow in 

large scale synoptic disturbances at upper 

levels in high and middle latitudes is quasi-

geostrophic, to a good approximation. The 
discussion in this section relates to a method 

of objectively determining the modified pat-

terns of wind, temperature and pressure which 

satisfy quasi-geostrophic and thermal wind 

conditions. 

 Consider the observed quantities, foi, and 

the modified values, fi, referred to a constant 

pressure surface, p, as follows 

  u0, u-eastward wind component 

  v0, v-northward wind component 

  ƒÓ0 

,ƒÓ-geopotential of a constant pressure 
       surface 

 T0, T-absolute air temperature 

The modified values, u, v, ƒÓ, T, must satisfy 

the following relations.

where R is the gas constant for air, f re-
presents the Coriolis parameter, and the e-
quations are in the x, y, p coordinate system. 

 In the above set of equations, (4b) may be 
replaced by the hydrostatic equilibrium re-
lation

 For convenience' sake let us consider the(x, y, 
p*) coordinate system in which p* is defined by

where P is the pressure at some reference 
level. Equations (4 a, b, c) then may be ex-
pressed as

It is not necessary that the observed values 
satisfy equations (5 a, b, c). 

 Let us now define the deviation or difference 
between observed and modified values by the 
primed quantities.

Substitution of (6) in equations (5 a, b, c) gives

which express the deviations as functions of 

observed quantities. If the sum of the squares 

of these deviations are expressed as 

          ƒÃ2•ßƒ¿12u'2+ƒ¿12v'2+ƒ¿2ƒÓ'2+ƒ¿32T'2 (8) 

where ƒ¿i's are weighting factors. The space 

integral of equation (8) may be given by

-2-
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-2-

Governing	
  QG	
  and	
  	
  
thermal	
  wind	
  eqs.:	
  

Devia9ons	
  from	
  	
  
observa9ons:	
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between the fi values. Some of these function-
al relations are given by the quasi-geostrophic 
wind equation, the thermal wind relation, the 
balance equation and the tendency equation. 

 Equations (2) and (3) form the basis for 
determining the modified values of the elements 
in a volume considered. The values calcu-
lated in this way depend on the functional 
form of equation (3), which must be selected 
basing on reasonable physical considerations 
of the problem at hand. Two such cases are 
considered here. In Case I the functional re-
lations given by equations (3) are in the form 
of the quasi-geostrophic and thermal wind 
equations. In Case II the functional relations 
are the balance equation and the conditions 
of non-divergence, (div v=0, div v=0), which 
corresponds to an equivalent barotropic atmos-
phere.

3. Case I. Quasi-geostrophic and thermal 

   wind condition 

 It is generally accepted that the flow in 

large scale synoptic disturbances at upper 

levels in high and middle latitudes is quasi-

geostrophic, to a good approximation. The 
discussion in this section relates to a method 

of objectively determining the modified pat-

terns of wind, temperature and pressure which 

satisfy quasi-geostrophic and thermal wind 

conditions. 

 Consider the observed quantities, foi, and 

the modified values, fi, referred to a constant 

pressure surface, p, as follows 

  u0, u-eastward wind component 

  v0, v-northward wind component 

  ƒÓ0 

,ƒÓ-geopotential of a constant pressure 
       surface 

 T0, T-absolute air temperature 

The modified values, u, v, ƒÓ, T, must satisfy 

the following relations.

where R is the gas constant for air, f re-
presents the Coriolis parameter, and the e-
quations are in the x, y, p coordinate system. 

 In the above set of equations, (4b) may be 
replaced by the hydrostatic equilibrium re-
lation

 For convenience' sake let us consider the(x, y, 
p*) coordinate system in which p* is defined by

where P is the pressure at some reference 
level. Equations (4 a, b, c) then may be ex-
pressed as

It is not necessary that the observed values 
satisfy equations (5 a, b, c). 

 Let us now define the deviation or difference 
between observed and modified values by the 
primed quantities.

Substitution of (6) in equations (5 a, b, c) gives

which express the deviations as functions of 

observed quantities. If the sum of the squares 

of these deviations are expressed as 

          ƒÃ2•ßƒ¿12u'2+ƒ¿12v'2+ƒ¿2ƒÓ'2+ƒ¿32T'2 (8) 

where ƒ¿i's are weighting factors. The space 

integral of equation (8) may be given by
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where V is a volume in the (x, y, p*) space. 

In order to obtain modified values of the 

parameters objectively, we require I to be a 
minimum. Based on techniques of the calculus 

of variations, therefore, 

             ƒÂ I=0 (10).

Substituting equations (7), (8), and (9) into 

equation (10), and simplifying through inte-

grating by parts assuming that the variations 
vanish at the boundary of V (or ƒÂƒÓ'=0 at 

the boundary), we have

The terms on the right of equation (13a) may 

be evaluated directly from observed data, 

using standard techniques. If their sum is 

zero, the modified values are equal to the 

observed quantities. These observed values 

then may be used in numerical prediction 

routines which are based on the quasi-geo-

strophic assumption. When the sum of these 

terms is not zero, solution of equation (13a) 

gives values of the deviation of geopotential, 
ƒÓ' . The modified value,ƒÓ, may be obtained 

from equation (6). This modified value may 

also be used in numerical prediction techniques 

based on the quasi-geostrophic assumption. 

 For purposes of discussion equation (12a) 

may be written in the form,

Since ƒÂƒÓ'is arbitrary, equation (11) is valid 

only when the quantity within the brackets 

is equal to zero. This may be expressed in 

a simplified form as

where

is the relative vorticity of the observed wind 
field, and the three dimensional Laplacian 
operator is given by

Equation (12a) shows the importance of vorti-
city in this method of objective analysis. 

 For the two dimensional case, equation (12a) 
reduces to

where

The first term in brackets on the right hand 

side of (12a') is the same as in the two di-

mensional case. The second term in brackets 

represents the difference between the observed 

temperature and the thickness-temperature. 

Equation (12a') indicates the importance of 

vorticity and thickness in the objective method 

considered here. In numerical prediction 

techniques based on the quasi-geostrophic and 

thermal wind assumptions it is felt that the 

initial map should be constructed objectively 

by a method also based on the same assump-

tions. It appears logical to impose the same 

constraints on the initial conditions as are. 

used by the prognostic routine in an effort 

to be consistent throughout the problem. 

 Values of observed quantities in equation 

(12a') may be obtained directly from normally 
observed data. The thickness-temperature 

may be evaluated using methods of finite 

differences. In order to estimate the values 

of the ratios involving ƒ¿1, ƒ¿2 , ƒ¿3 , and to 

demonstrate the use of the above methods, 

two simple examples will be considered. 

 Example 1. Consider the conditions given 

by

and

where U, V, A, f and ƒ³ are constants; and
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where V is a volume in the (x, y, p*) space. 
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minimum. Based on techniques of the calculus 
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Substituting equations (7), (8), and (9) into 

equation (10), and simplifying through inte-

grating by parts assuming that the variations 
vanish at the boundary of V (or ƒÂƒÓ'=0 at 

the boundary), we have

The terms on the right of equation (13a) may 

be evaluated directly from observed data, 
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zero, the modified values are equal to the 

observed quantities. These observed values 

then may be used in numerical prediction 

routines which are based on the quasi-geo-

strophic assumption. When the sum of these 

terms is not zero, solution of equation (13a) 

gives values of the deviation of geopotential, 
ƒÓ' . The modified value,ƒÓ, may be obtained 

from equation (6). This modified value may 

also be used in numerical prediction techniques 

based on the quasi-geostrophic assumption. 

 For purposes of discussion equation (12a) 

may be written in the form,

Since ƒÂƒÓ'is arbitrary, equation (11) is valid 

only when the quantity within the brackets 

is equal to zero. This may be expressed in 
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reduces to
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The first term in brackets on the right hand 

side of (12a') is the same as in the two di-
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represents the difference between the observed 

temperature and the thickness-temperature. 

Equation (12a') indicates the importance of 

vorticity and thickness in the objective method 

considered here. In numerical prediction 

techniques based on the quasi-geostrophic and 

thermal wind assumptions it is felt that the 

initial map should be constructed objectively 

by a method also based on the same assump-

tions. It appears logical to impose the same 

constraints on the initial conditions as are. 

used by the prognostic routine in an effort 

to be consistent throughout the problem. 

 Values of observed quantities in equation 

(12a') may be obtained directly from normally 
observed data. The thickness-temperature 

may be evaluated using methods of finite 

differences. In order to estimate the values 

of the ratios involving ƒ¿1, ƒ¿2 , ƒ¿3 , and to 

demonstrate the use of the above methods, 

two simple examples will be considered. 

 Example 1. Consider the conditions given 

by

and

where U, V, A, f and ƒ³ are constants; and
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When the fi's are not independent, equation 
(2) furnishes a relation between observed and 
modified values of the elements. 

 In order to obtain a solution, a second 
relation must exist between pairs of fi values. 
In the case where the fi values are related 
this condition may be expressed generally as

where Fj represents j functional relations 
between the fi values. Some of these function-
al relations are given by the quasi-geostrophic 
wind equation, the thermal wind relation, the 
balance equation and the tendency equation. 

 Equations (2) and (3) form the basis for 
determining the modified values of the elements 
in a volume considered. The values calcu-
lated in this way depend on the functional 
form of equation (3), which must be selected 
basing on reasonable physical considerations 
of the problem at hand. Two such cases are 
considered here. In Case I the functional re-
lations given by equations (3) are in the form 
of the quasi-geostrophic and thermal wind 
equations. In Case II the functional relations 
are the balance equation and the conditions 
of non-divergence, (div v=0, div v=0), which 
corresponds to an equivalent barotropic atmos-
phere.

3. Case I. Quasi-geostrophic and thermal 

   wind condition 

 It is generally accepted that the flow in 

large scale synoptic disturbances at upper 

levels in high and middle latitudes is quasi-

geostrophic, to a good approximation. The 
discussion in this section relates to a method 

of objectively determining the modified pat-

terns of wind, temperature and pressure which 

satisfy quasi-geostrophic and thermal wind 

conditions. 

 Consider the observed quantities, foi, and 

the modified values, fi, referred to a constant 

pressure surface, p, as follows 

  u0, u-eastward wind component 

  v0, v-northward wind component 

  ƒÓ0 

,ƒÓ-geopotential of a constant pressure 
       surface 

 T0, T-absolute air temperature 

The modified values, u, v, ƒÓ, T, must satisfy 

the following relations.

where R is the gas constant for air, f re-
presents the Coriolis parameter, and the e-
quations are in the x, y, p coordinate system. 

 In the above set of equations, (4b) may be 
replaced by the hydrostatic equilibrium re-
lation

 For convenience' sake let us consider the(x, y, 
p*) coordinate system in which p* is defined by

where P is the pressure at some reference 
level. Equations (4 a, b, c) then may be ex-
pressed as

It is not necessary that the observed values 
satisfy equations (5 a, b, c). 

 Let us now define the deviation or difference 
between observed and modified values by the 
primed quantities.

Substitution of (6) in equations (5 a, b, c) gives

which express the deviations as functions of 

observed quantities. If the sum of the squares 

of these deviations are expressed as 

          ƒÃ2•ßƒ¿12u'2+ƒ¿12v'2+ƒ¿2ƒÓ'2+ƒ¿32T'2 (8) 

where ƒ¿i's are weighting factors. The space 

integral of equation (8) may be given by
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The	
  total	
  quadra9c	
  error	
  
in	
  the	
  integrand:	
  

Remaining	
  difficul9es	
  recognized:	
  
•  Extrapola9on	
  beyond	
  area	
  
	
  	
  	
  	
  	
  	
  of	
  available	
  data.	
  
•  Specifica9on	
  of	
  weights	
  From	
  Sasaki	
  (1958)	
  

Many	
  contributed	
  to	
  objec9ve	
  	
  
Analysis:	
  Cressman,	
  Charney,	
  	
  
Platzman,	
  Smagorinsky,	
  others.	
  



Discovery	
  of	
  the	
  Kalman	
  Filter	
  as	
  a	
  Prac9cal	
  Tool	
  for	
  
Numerical	
  Weather	
  Predic9on	
  

The	
  earliest	
  men9on	
  of	
  the	
  Kalman	
  filter	
  as	
  a	
  possible	
  approach	
  to	
  ini9alize	
  NWP	
  models	
  is	
  
found	
  in	
  a	
  publica9on	
  in	
  the	
  Journal	
  of	
  Atmospheric	
  Sciences,	
  	
  by	
  Richard	
  H.	
  Jones,	
  in	
  1965.	
  

Computa5onal	
  complexity	
  kept	
  most	
  from	
  looking	
  into	
  the	
  KF	
  for	
  real-­‐9me	
  NWP	
  applica9ons.	
  	
  	
  

It	
  wasn’t	
  un9l	
  the	
  early	
  1980s	
  that	
  M.	
  Ghil,	
  S.	
  E.	
  Cohn,	
  &	
  D.	
  P.	
  Dee	
  started	
  looking	
  at	
  the	
  
problem	
  and	
  studying	
  the	
  KF	
  proper9es	
  for	
  hyperbolic	
  PDEs	
  (associated	
  with	
  NWP).	
  	
  	
  	
  

Though	
  works	
  on	
  KF	
  for	
  NWP	
  started	
  appearing	
  more	
  oven,	
  it	
  wasn’t	
  un9l	
  1994	
  with	
  Geir	
  
Evensen’s	
  ensemble	
  Kalman	
  filter	
  that	
  the	
  feasibility	
  of	
  using	
  the	
  filter	
  for	
  real-­‐9me	
  
weather	
  applica9ons	
  started	
  sinking	
  in.	
  

Since	
  then,	
  the	
  literature	
  on	
  Kalman	
  filtering	
  related	
  to	
  NWP	
  (and	
  other	
  Earth	
  Sciences	
  
applica9ons)	
  has	
  exploded.	
  	
  Many	
  weather	
  centers	
  now	
  have	
  some	
  version	
  of	
  an	
  
ensemble-­‐based	
  data	
  assimila9on	
  procedure	
  implemented;	
  some	
  of	
  these	
  being	
  EnKF’s.	
  

Most	
  interes9ngly,	
  many	
  of	
  the	
  EnKF’s	
  fit	
  under	
  the	
  banner	
  of	
  Square-­‐Root	
  Kalman	
  Filters.	
  
So,	
  in	
  some	
  sense,	
  it	
  seems	
  we	
  have	
  come	
  all	
  the	
  way	
  around	
  to	
  conclude	
  (for	
  somewhat	
  
slightly	
  different	
  reasons),	
  that	
  Square-­‐Root	
  filters	
  are	
  bener	
  suited	
  for	
  prac9cal	
  applica9ons.	
  



The	
  NASA	
  GMAO	
  Varia9onal-­‐Ensemble	
  Hybrid	
  	
  
Data	
  Assimila9on	
  System	
  	
  



In	
  the	
  process	
  of	
  preparing	
  this	
  presenta9on	
  I	
  came	
  across	
  an	
  ar9cle	
  not	
  too	
  dissimilar	
  
from	
  that	
  of	
  McGee	
  &	
  Schmidt	
  (1985).	
  This	
  is	
  the	
  ar9cle	
  of	
  Grewal	
  &	
  Andrews	
  (2010)	
  which	
  
also	
  provides	
  a	
  nice	
  review	
  of	
  the	
  use	
  of	
  Kalman	
  filtering	
  in	
  Aerospace.	
  It	
  seems	
  unfortunate,	
  
though,	
  these	
  authors	
  are	
  not	
  aware	
  of	
  the	
  earlier	
  review	
  of	
  McGee	
  &	
  Schmidt.	
  

Closing	
  Remarks	
  

In	
  our	
  Earth	
  Science	
  applica9ons,	
  the	
  square-­‐root	
  filter	
  formula9on	
  has	
  become	
  rather	
  	
  
important	
  as	
  it	
  is	
  behind	
  the	
  ensemble-­‐based	
  formula9ons	
  for	
  the	
  filtering	
  (and	
  smoothing)	
  
problem(s).	
  

Just	
  in	
  our	
  field	
  of	
  interest,	
  the	
  amount	
  of	
  literature	
  on	
  filtering	
  and	
  smoothing	
  has	
  explored.	
  
it	
  is	
  becoming	
  very	
  difficult	
  to	
  know	
  all	
  available	
  varia9ons	
  of	
  possible	
  twists	
  to	
  the	
  solu9on	
  	
  
equa9ons.	
  But	
  it	
  seems	
  that	
  those	
  who’ve	
  made	
  the	
  larger	
  strides	
  in	
  progress	
  in	
  our	
  field	
  have	
  	
  
given	
  special	
  anen9on	
  not	
  only	
  to	
  the	
  assimila5on	
  strategy,	
  but	
  also	
  to	
  how	
  to	
  treat	
  the	
  	
  
observa5ons	
  being	
  assimila9on:	
  
	
  
	
  (a)	
  removal	
  of	
  biases	
  
	
  (b)	
  specifica9on	
  of	
  underlying	
  error	
  sta5s5cs	
  	
  
	
  (c)	
  treatment	
  of	
  balance	
  	
  
	
  (d)	
  and	
  a	
  host	
  of	
  other	
  details	
  
	
  
have	
  all	
  been	
  fundamental	
  to	
  progress	
  in	
  Es9ma9on	
  Techniques	
  for	
  Earth	
  Sciences.	
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1. Objectives

The main objective of this lecture is to present a sum-
mary of some of the methods most commonly used for
state estimation.

What I hope to convey to you:

. The probabilistic approach allows for the proper descrip-
tion of most (if not all) methods currently employed in
data assimilation.

. In practice, most methods used in atmospheric and oceanic
data assimilation boil down to slightly di↵erent versions
of least-squares.

. Good understanding of the example of “estimation of a
constant vector” provides a solid basis for understanding
many of the methods currently used.

. Much attention should be given to details:

• o↵-line and on-line quality control

• removal of both model and observation biases

• proper use of observations; they should be used at
right time and be given proper error characteristics

• fields should be properly initialized

• careful consideration of tangent linear and adjoint
models issues

. Remember ... adaptive procedures are robust.

3

Main	
  Objec9ve	
  



2. Concepts of Probabilistic Estimation

Central to probabilistic estimation is the concept of a
joint probability distribution (pdf) of two processes x
and y, and denoted px,y(x,y).

Also, fundamental to Bayesian estimation is the defini-
tion of conditional probability distribution functions:

px|y(x|y) =
pxy(x,y)

py(y)

and Bayes rule for converting between conditional pdf’s:

px|y(x|y) =
py|x(y|x)px(x)

py(y)

The m-th conditional moment is defined as:

E{xm|y} ⌘
Z 1

�1
xm

px|y(x|y)

with the first moment, the mean, µx|y = E{x|y}.

A typical conditional pdf is that of a normally distributed
random variable x conditioned on y

px|y(x|y) =
1

(2⇡)n/2|Px|y|1/2
exp


�
1

2
(x� µx|y)

TP�1
x|y(x� µx|y)

�

which is a n-dimensional Gaussian function.

4
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2.1 Cost Function

In the Bayesian approach to estimation we define a func-
tion expressing our confidence in the estimate. This
function is referred to as the cost (or risk, or fit) func-
tion and it takes the general form:

J (x̂) ⌘ E{J(x� x̂)}

=
Z 1

�1
J(x� x̂) px(x) dx

=
Z 1

�1

Z 1

�1
J(x� x̂) pxy(x,y) dy dx

where

x true state vector
y observation vector
x̂ state estimate vector

x̃ = x� x̂ error estimate vector
J(x̃) measure of accuracy
px(x) marginal pdf of x

pxy(x,y) joint pdf between x and y

Note: Not all function J’s are satisfactory cost func-
tions.
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Quick Recap

Bayes rule for pdf’s:

px|y(x|y) =
py|x(y|x)px(x)

py(y)

Conditional mean:

E{x|y} ⌘
Z 1

�1
x px|y(x|y)

Minimum variance estimate:

x̂MV(y) =
Z 1

�1
xpx|y(x|y) dx

= E{x|y}

Maximum a posteriori probability estimate:

@py|x(y|x)px(x)
@x

����
x=x̂MAP

= 0

Maximum likelihood estimate (max a priori pdf):

@py|x(y|x)
@x

����
x=x̂ML

= 0

10

Quick Recap

Observations: y = Hx+ bo

Want to determine: px|y(x|y)

when x ⇠ N (µ,P), and bo ⇠ N (0,R), we find:

px|y(x|y)↵ exp[�
1

2
(x� x̂)TP�1

x̃ (x� x̂)]

where

P�1
x̃ = P�1 +HTR�1H ,

and

x̂ = Px̃(H
TR�1y+P�1µ)

General Cost Function:

J(x) =
1

2
(µ� x)TP�1(µ� x) +

1

2
(y �Hx)TR�1(y �Hx)

Estimation Results:

x̂MV = x̂MAP = x̂

x̂ML = Px̃H
TR�1y

x̂MV|P�1=0 = x̂MAP|P�1=0 = x̂ML

18

Es9ma9ng	
  a	
  Constant	
  Vector	
  	
  
from	
  Noisy	
  Observa9ons	
  

Es9mators	
   Observer	
  and	
  Solu9ons	
  



The Least-Squares (LS) Connection

Case I: No prior information on x is available.

Minimization of the cost function

JLS(x̂) =
1

2
(y �Hx̂)T R̃�1(y �Hx̂)

results in

x̂LS = (HT R̃�1H)�1HT R̃�1y

which is identical to the ML (MV/MAP) estimate(s)
if R̃ = R. In general, however, the LS solution can
be shown to always be less accurate than that of ML
(MV/MAP).

Case II: Some information on x is available.

The cost function to be minimized is now

JLSP(x̂) =
1

2
(µ� x̂)T P̃�1(µ� x̂)+

1

2
(y�Hx̂)T R̃�1(y�Hx̂)

with minimum achieved for

x̂LSP = (P̃�1 +HT R̃�1H)�1(HT R̃�1y+ P̃�1µ)

which is identical to the MV/MAP estimate if R̃ = R
and P̃ = P. In general, however, the LSP solution
can be shown to be always less accurate than that of
MV/MAP.
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4. Three-dimensional Variational Approach

The approach known in atmospheric data assimilation as
3d-var is essentially a least squares method that in the
linear sense minimizes the cost function JLSP(x) seen
previously,

JLSP(x) =
1

2
(µ�x)T P̃�1(µ�x)+

1

2
(y�Hx)T R̃�1(y�Hx)

The minimization is typically done at synoptic hours,
with a frequency of 6 hours and using observations avail-
able within a 6-hr window around the synoptic time.

In practice, an atmospheric prediction model is assumed
to provide the mean state estimate µ, that is,

µ ⌘ xb = m(x0)

where xb is the forecast (background) at a given time af-
ter evolving the model m forward in time, starting from
an initial condition x0 representing the best estimate of
the state of the atmosphere at a previous time.

To describe 3d-var, the time indexes are not so relevant
and are dropped for simplification. Moreover, the map-
ping between observations and the estimate is nonlinear
and a slightly more general cost function is actually used

J3dvar(x) =
1

2
(xb�x)T P̃�1(xb�x)+

1

2
[y�h(x)]T R̃�1[y�h(x)]

where h(x) is the nonlinear observation function (oper-
ator).
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Three-­‐dimensional	
  Varia9onal	
  Approach	
  
To minimize this cost function using feasible computa-
tional methods, one needs to transform the cost func-
tion back to a quadratic function. This can be done
by linearizing the observation operator h(x) around the
background state, that is,

h(x) ⇡ h(xb) +H(xb)�x

with �x ⌘ x�xb and H(xb) now denotes the Jacobian of
the observation operator, h(x),

H(xb) ⌘
@h(x)

@x

����
x=xb

Hence, we can right y � h(x) as

y � h(x) = y � h(xb)� h(x) + h(xb)
= d�H(xb)�x

Using this first order expansion of the observation op-
erator the cost function becomes quadratic form again

J3dvar(�x) =
1

2
�xT P̃�1

�x+
1

2
[d�H(xb)�x]T R̃�1[d�H(xb)�x]

and it defines the so-called incremental 3d-var problem,
since the cost is now written as a function of the incre-
ment vector �x.

By inspection of our “estimation of a constant” exer-
cise we see that minimization of the incremental 3d-var
problem leads to the solution

�xa = P̃aHT R̃�1d

with P̃a = (P̃�1 +HT R̃�1H)�1.
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Remarks

. The 3d-var solution provides a LSP solution to the prob-
lem given the uncertainties in the background and ob-
servation error covariances P̃ and R̃.

. Employing computational methods to minimize the cost
function directly is referred to as the 3d-var approach;
whereas calculating the estimate from the analytical so-
lution has become known as the PSAS approach, for
the Physical-space Statistical Analysis System.

. In the analytical (PSAS) approach one avoids the n di-
mensional matrix inversion, by solving an algebraically
equivalent equation (Ex. 7):

�xa = P̃HT(HP̃HT + R̃)�1d

which is known as the PSAS equation, and it involves
the inversion of an m < n dimensional matrix.

. In practice, even this observation-space inversion is not
directly calculated. Instead, the equation above is split
in two stages:

(HP̃HT + R̃)� = d
�xa = P̃HT�

where the first equation is solved using an iterative
method, such as a conjugate gradient method. Be-
cause of the size of these matrices, they are all handled
as operators, meaning, the are not actual matrices but
are function calls simulating the application of a matrix
on to a vector.
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Remarks (cont.)

. The interplay between the 3d-var and PSAS approaches
is a statement of the fact that these approaches are dual
of each other. This essential means that one can be
converted in to the other and their solutions are equiv-
alent (Ex. 8).

. But don’t get confused. Addressing the problem from
the analytical solution has nothing to do with the word-
ing “physical-space” as in PSAS. Solving the problem
from the analytical solution is detached from the way
the background error covariance is formulated.

. The a priori (background) error covariance is a parame-
terized quantity based on assumptions related to balance
relationships and possible structure of errors. Tradi-
tional implementations of the direct minimization 3d-var
approach (e.g., NCEP’s SSI) have modeled background
error covariances in spectral space. Di�culty in relaxing
the assumptions behind these spectral space formula-
tions has driven the reformulation of the covariances so
they operate in physical-space. Modern 3d-var systems
now minimize the cost function directly, and formulate
the covariance in physical space (e.g., the Grid-space
Statistical Interpolation approach)
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Remarks (cont.)

. As described here, 3d-var operates at a single time, that
is, the solution of the minimization problem is sought
at a given time. However, the observation vector y
jams together observations from a 6-hr time interval.
This means in particular that calculation of the residual
vector d ⌘ y � h(x) is not accurate since x is taken at
the time of the solution (analysis).

. Work done at operational centers has demonstrated that
an improvement in the solution of the problem can be
obtained when using an approach called FGAT: first
guess at appropriate time. In this approach the function
h is augmented to accommodate backgrounds (first-
guesses) at various times within the window of observa-
tions. Typically, in 3d-var systems, FGAT means taking
x at �3, 0, and 3 hrs from the synoptic hour; or some-
times taking them on an hourly basis. In these cases,
the function h(x) also accommodates a time interpola-
tion procedure to calculate the d vectors at exactly the
time of the observations.
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5. Four-dimensional Variational Approach

The FGAT approach is a simple attempt to address the
lack of a time dimension in 3d-var. The proper way to
account for the time dimension is to redefine the cost
function:

2J4dvar = ||x�x0||B�1+
IX

i=0

||y
i

�h(x
i

)||R�1
i

+
IX

i=1

||x
i

�m(x
i�1)||Q�1

i

where ||x||A ⌘ xTAx, for an arbitrary n-vector x and an
arbitrary n⇥ n-matrix A.

The cost function above applies to a discrete time in-
terval with a total of I time slots. The first term ac-
commodates the uncertainty in the initial condition with
the matrix B being the error covariance associated with
this uncertainty; the second term accommodates the
uncertainties in the states x

i

with respect to the obser-
vations at all times t

i

in the interval, weighted by the
observation error covariances R

i

; and the last term ac-
commodates for uncertainties in the states themselves,
weighted by the model error covariances Q

i

. This last
term takes care of the fact that the prediction model is
assumed to be imperfect:

x
i

= m(x
i�1) + q

i

with the sequence of q
i

vectors assumed to be white in
time and normal with mean zero and covariance Q

i

, i.e.,
q
i

⇠ N (0,Q
i

).
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Using the incremental approach we can re-write the cost
function as

2J4dvar = ||�x0||B�1 +
IX

i=0

||d
i

�H
i

�x
i

||R�1
i

+
IX

i=1

||q
i

||Q�1
i

where here again, H
i

is the Jacobian of h. This trans-
forms the dependence on the cost function from
J4dvar = J4dvar(x0,x1, · · · ,x

I

) to J4dvar = J4dvar(�x0,q1, · · · ,q
I

).

The simplest way to understand how 4d-var basically
amounts to a gigantic LSP is by re-writing further the
cost function based on the following augmented vectors:
�x ⌘

⇥
�xT

0q
T

1 · · ·qT

I

⇤
T

and d ⌘
⇥
dT

0d
T

1 · · ·dT

I

⇤
T

. Therefore
(Ex. 9),

2J4dvar(�x) = �xTD�1
�x+ (G�x� d)R�1(G�x� d)

where the a priori error covariance matrix becomes D ⌘
diag(B,Q1, · · · ,Q

N

), the observations error covariance
becomes R ⌘ diag(R1,R2, · · · ,R

N

) and the “observa-
tion” matrix becomes

G ⌘

0

BBB@

H0 0 0 · · · 0
H1M1,0 H1 0 · · · 0
H2M2,0 H2M2,1 H2 0 · · ·

· · · · · · · · · · · · · · ·
H

I

M
I,0 H

I

M
I,1 H

I

M
I,2 · · · H

I

1

CCCA

where M
i,i�1 is the Jacobian of the forward model

M
i,i�1(xb

i�1) ⌘
@m(x

i�1)

@x
i�1

����
x

i�1=xb

i�1

is now part of the observation matrix.
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Formally, we can infer the solution of the minimization
of this gigantic cost function by referring back to our
“estimation of a constant” exercise, i.e., at the mini-
mum the solution is give by

�xa = (D�1 +GTR�1G)�1GTR�1d

Similarly to 3dvar, when the solution to 4d-var is being
sought by directly minimizing the cost function we need
its gradient to be available

r
�xJ = D�1

�x+GTR�1(G�x� d)

since practical minimization algorithms are gradient-based,
e.g., the conjugate gradient method.

Alternatively, we can use the algebraically equivalent ex-
pression

�xa = DGT(GDGT +R)�1d

which is analogous to the PSAS equation, but since it
now involves the fourth dimension of time it is known
here as the 4d-PSAS equation. Just as in the 3d case, a
practical approach to solve the 4d-PSAS equation splits
the equation in two steps:

(GDGT +R)� = d

�xa = DGT�

where here the vectors �xa, �, and d are all four-dimensional.
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Remarks

. To solve the first 4D-PSAS equation we must have a
smart way of applying the gigantic matrix on the left-
hand-side to the vector �. The main complication in
this operation comes from having to calculate GDGT�.
To do so, we can notice that an element j of this term
is given by (Ex. 10)

(GDGT�)
j

= H
j

M
j,0B

IX

i=1

MT

i,0H
T

i

�
i

+ H
j

jX

m=1

M
j,m

Q
m

IX

i=m

MT

i,m

HT

i

�
i

These calculations can be broken down in to a backward
integration of the equation

f
i

= MT

i+1,ifi+1 +HT

i

�
i

for i = I � 1, I � 2, · · · ,0, with f
I

⌘ HT

I

�
I

; followed by a
forward integration

g
m

= M
j,m�1gm�1 +Q

m

f
m

for m = 1,2, · · · , j, and with g0 ⌘ Bf0. This sequence of
operations is known as the sweeper method and specifi-
cally constitute the so called augmented representer ap-
proach to the practical solution to calculating the 4d-
PSAS equation (Ex. 11).

. In the perfect model case, Q = 0, the 4d-var and 4d-
PSAS equations above dramatically simplify.
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6. The Probabilistic Approach to Filtering

Let us indicate by Yo

k

= {yo

1, · · · ,yo

k�1,y
o

k

}, the set of all
observations up to and including time t

k

. Similarly, let
us indicate by Xt

k

= {xt

1, · · · ,xt

k�1,x
t

k

} the set of all true
states of the underlying system up to time t

k

.

Knowledge of the pdf of the true state over the entire
time period given all observations over the same period
would allow us to calculate an estimate of the trajec-
tory of the system over the time period. Therefore,
calculation of the following pdf

p(Xt

k

|Yo

k

)

is desirable. But, before seeking a system trajectory
estimate, let us seek an estimate of the state of the
system only at time t

k

. For that, the relevant pdf is

p(xt

k

|Yo

k

) = p(xt

k

|yo

k

,Yo

k�1)

=
p(xt

k

,yo

k

,Yo

k�1)

p(yo

k

,Yo

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

,Yo

k�1)

p(yo

k

,Yo

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

|Yo

k�1)p(Y
o

k�1)

p(yo

k

|Yo

k�1)p(Y
o

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

|Yo

k�1)

p(yo

k

|Yo

k�1)
.

This relates the transition probability of interest with
pdf’s that can be calculated more promptly.
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Whiteness of the observation sequence allows us to write

p(yo

k

|xt

k

,Yo

k�1) = p(yo

k

|xt

k

)

and therefore,

p(xt

k

|Yo

k

) =
p(yo

k

|xt

k

)p(xt

k

|Yo

k�1)

p(yo

k

|Yo

k�1)

It remains for us to determine each one of the transition
probability densities in this expression.

Assumption: all pdf’s (processes) are Gaussian and the
observation process is linear, that is, yo

k

= H
k

xt

k

+ bo

k

,
with bo

k

⇠ N (0,R
k

).

In this case, an immediate relationship between the vari-
ables above and those from the example of estimating
a constant vector can be drawn:

. y ! yo

k

. x ! xt

k

. py|x(y|x) ! p(yo

k

|xt

k

)

. px(x) ! p(xt

k

|Yo

k�1)

. py(y) ! p(yo

k

|Yo

k�1)

31



Probabilis9c	
  Approach	
  to	
  Filtering	
  
Consequently we have

p(yo

k

|xt

k

) =
1

(2⇡)mk

/2|R
k

|1/2

exp


�
1

2
(yo

k

�H
k

xt

k

)TR�1
k

(yo

k

�H
k

xt

k

)

�

where we noticed that

E{yo

k

|xt

k

} = E{(H
k

xt

k

+ bo

k

)|xt

k

} = H
k

xt

k

and

cov{yo

k

,yo

k

|xt

k

} ⌘ E{[yo

k

� E{yo

k

|xt

k

}][yo

k

� E{yo

k

|xt

k

}]T |xt

k

}
= R

k

Analogously, we have

p(yo

k

|Yo

k�1) =
1

(2⇡)mk

/2|�
k

|1/2

exp
h
�
1

2
(yo

k

�H
k

xf

k|k�1)
T��1

k

(yo

k

�H
k

xf

k|k�1)
i

where we define xf

k|k�1 and the m

k

⇥m

k

matrix �
k

as

xf

k|k�1 ⌘ E{xt

k

|Yo

k�1} , �
k

⌘ H
k

Pf

k

HT

k

+ R
k

with the n⇥ n matrix Pf

k

defined as

Pf

k|k�1 ⌘ E{[xt

k

� xf

k

][xt

k

� xf

k

]T |Yo

k�1}
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To fully determine the a posteriori conditional pdf p(xt

k

|Yo

k

),
it remains to find the a priori conditional pdf p(xt

k

|Yo

k�1).
Since we assumed all pdf’s to be Gaussian, the from
the definitions of xf

k

and Pf

k

above we have p(xt

k

|Yo

k�1) ⇠
N (xf

k|k�1,Pk|k�1), that is,

p(xt

k

|Yo

k�1) =
1

(2⇡)n/2|Pf

k

|1/2

exp
h
�
1

2
(xt

k

� xf

k|k�1)
T(Pf

k|k�1)
�1(xt

k

� xf

k|k�1)
i

and the conditional pdf of interest can be written as

p(xt

k

|Yo

k

) =
1

(2⇡)n/2|Pa

k|k|1/2
exp

✓
�
1

2
J

◆

where

J = (xa

k|k � xt

k

)T(Pa

k|k)
�1(xa

k|k � xt

k

)

is the cost function, with xa

k|k minimizing it.

We can now identify the quantities x̂MV and Px̃ of the
problem of estimating a constant vector with xa

k

and
Pa

k

, respectively. Consequently, it follows from this cor-
respondence that

xa

k|k = xf

k|k�1 + Pf

k|k�1H
T

k

��1
k

(yo

k

�H
k

xf

k|k�1)

(Pa

k|k)
�1 = (Pf

k|k�1)
�1 + HT

k

R�1
k

H
k
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Remarks

. The estimate xa

k|k maximizing the a posteriori pdf is the
MAP estimate.

. Moreover, since the resulting a posteriori pdf is Gaus-
sian, this estimate is also the conditional mean, that
is,

xa

k|k ⌘ E{xt

k

|Yo

k

} ,
and therefore it is the MV estimate which is what the
Kalman filter obtains.

. Similar results can be obtained by minimizing the cost
function

J3dVar(�xk

) ⌘ �xT

k

(Pf

k|k�1)
�1

�x
k

+ (d
k

�H
k

�x
k

)TR�1
k

(d
k

�H
k

�x
k

)

where �x
k

⌘ xt

k

� xf

k|k�1, and d
k

⌘ yo

k

� H
k

xf

k|k�1. In

the meteorological literature J3dVar(�xk

) is referred to
as the incremental three-dimensional variational (3dvar)
analysis cost function.

. Since in practice we have only rough estimates of the
observations and forecast error covariance matrices R

k

and Pf

k|k�1, the minimization problem above solves none
other than a LSP problem, given some prior information.
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Remarks (cont.)

. So far we have made no assumptions about the process
xt

k

other than its conditional pdf p(xt

k

|Xo

k�1) being Gaus-
sian. However, if we want to be able to calculate an
estimate of the state one time ahead, that is at t

k+1,
using the knowledge gather up to time t

k

we must con-
sider the pdf

p(xt

k+1,x
t

k

|Xo

k

) = p(xt

k+1|xt

k

,Xo

k

)p(xt

k

|Xo

k

)

= p(xt

k+1|xt

k

)p(xt

k

|Xo

k

)

which refers to the yet unspecified transition pdf p(xt

k+1|xt

k

)
and therefore we must know more about the process xt

k

.

. When the process xt

k

is linear the calculations are simple.
That is, the system

xt

k+1 = M
k+1,kx

t

k

+ bt

k+1

with bt

k+1 ⇠ N (0,Q
k+1) results in a Gaussian transition

pdf (for an initial Gaussian pdf p(xt

0)):

p(xt

k+1|xt

k

) ⇠ N (M
k+1,kx

t

k

,Q
k+1) .

. For linear dynamical process above it follows that

xf

k+1 = = M
k+1,kE{xt

k+1|Yo

k

} + E{bt

k+1|Yo

k

}
= M

k+1,kx
a

k|k

Pf

k+1|k = cov{xt

k+1,x
t
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Kalman	
  Filter	
  for	
  Highly	
  Nonlinear	
  Dynamics	
  

From	
  Miller	
  et	
  al.	
  (1994)	
  

Robert	
  N.	
  Miller	
  

Stochas9cally	
  forced	
  double-­‐well	
  poten9al	
  



Diverging	
  Solu9ons	
  from	
  Highly	
  	
  
Nonlinear	
  Dynamics	
  

What	
  does	
  a	
  9ny	
  ini9al	
  perturba9on	
  do	
  to	
  predic9on?	
  

σ(0)	
  =	
  10-­‐6	
  

Answer:	
  Cause	
  some	
  (chao9c)	
  trouble!	
  

What	
  about	
  a	
  not-­‐so-­‐9ny	
  ini9al	
  perturba9on?	
  

Answer:	
  It	
  	
  causes	
  a	
  lot	
  of	
  trouble!	
  	
  The	
  two	
  runs	
  started	
  
from	
  ini9al	
  condi9ons	
  differing	
  by	
  about	
  a	
  few	
  percent	
  in	
  
magnitude.	
  You	
  can	
  think	
  of	
  the	
  red	
  lines	
  as	
  being	
  the	
  true	
  
state	
  evolu9on	
  and	
  the	
  green	
  lines	
  as	
  being	
  the	
  predicted	
  
state.	
  In	
  this	
  case,	
  the	
  predic9on	
  becomes	
  useless	
  very	
  
quickly.	
  The	
  solu9on	
  to	
  this	
  problem	
  is	
  to	
  assimilate	
  
observa9ons.	
  

σ(0)	
  =	
  1	
  



The	
  Extended	
  Kalman	
  Filter	
  for	
  Highly	
  	
  
Nonlinear	
  Dynamics	
  

Then,	
  what	
  does	
  data	
  assimila9on	
  do?	
  
σ(obs)	
  =	
  2	
  

Answer:	
  It	
  improves	
  our	
  ability	
  to	
  es9mate	
  the	
  true	
  state	
  and	
  make	
  
rela9vely	
  reasonable	
  short-­‐	
  to	
  medium-­‐range	
  predic9ons.	
  However,	
  
depending	
  on	
  the	
  data	
  assimila9on	
  scheme,	
  the	
  es9mate	
  may	
  diverge	
  
aver	
  a	
  while.	
  The	
  red	
  line	
  represents	
  the	
  true	
  state	
  while	
  the	
  green	
  line	
  
represents	
  the	
  es9mate	
  (assimila9on),	
  the	
  crosses	
  are	
  the	
  observa9ons;	
  
the	
  data	
  assimila9on	
  scheme	
  is	
  the	
  extended	
  Kalman	
  filter	
  (EKF).	
  

Back	
  to	
  Miller	
  et	
  al	
  (1994)	
  

Red:	
  Truth	
  
Green:	
  Es9mate	
  
Pluses:	
  Observa9ons	
  



Some	
  Traps	
  to	
  Avoid	
  

Filter	
  error	
  es9mates	
  are	
  reliable	
  indicators	
  of	
  performance!	
  	
  

From	
  Maybeck	
  (1981	
  also	
  1982)	
  

Lesson:	
  	
  Ideally	
  the	
  specified	
  (computed)	
  
error	
  covariances	
  should	
  be	
  as	
  close	
  as	
  possible	
  
to	
  the	
  true	
  error	
  covariance	
  (bonom)	
  –	
  this	
  is	
  
what	
  we	
  all	
  aim	
  when	
  trying	
  to	
  tune	
  the	
  error	
  	
  
sta9s9cs	
  in	
  our	
  systems.	
  
	
  
Under	
  es3ma3on	
  of	
  errors	
  is	
  rather	
  undesirable	
  
as	
  it	
  is	
  bound	
  to	
  lead	
  to	
  filter	
  divergence	
  (top).	
  
	
  
In	
  general,	
  slightly	
  over	
  es3ma3on	
  of	
  error	
  keeps	
  	
  
the	
  filter	
  from	
  “believing”	
  too	
  much	
  on	
  its	
  own	
  	
  
es9mates	
  –	
  thus	
  preven9ng	
  divergence	
  	
  
(mid-­‐plot	
  shows	
  an	
  exaggerated	
  version	
  of	
  this	
  
–	
  that	
  in	
  this	
  case	
  s9ll	
  diverge).	
  



Do	
  observa9ons	
  always	
  improve	
  es9mate	
  through	
  the	
  analysis	
  step?	
  	
  

From	
  Ghil	
  et	
  al.	
  (1981)	
  

Re
al
iza

9o
n	
  
1	
   Realiza9on	
  2	
  

Lesson:	
  No.	
  Only	
  in	
  the	
  expected	
  mean	
  	
  
	
  	
  	
  	
  	
  sense,	
  and	
  in	
  the	
  op3mal	
  (BLUE)	
  	
  	
  
	
  	
  	
  	
  	
  circumstance	
  this	
  is	
  the	
  case.	
  Recall	
  	
  
	
  	
  	
  	
  	
  also	
  that	
  in	
  prac9ce	
  we	
  only	
  have	
  a	
  
	
  	
  	
  	
  	
  single	
  realiza9on	
  of	
  nature	
  to	
  work	
  
	
  	
  	
  	
  	
  from.	
  

Some	
  Traps	
  to	
  Avoid	
  

BLUE:	
  The	
  linear	
  Kalman	
  filter	
  is	
  some9mes	
  referred	
  to	
  as	
  the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (b)est	
  (l)inear	
  (u)nbiased	
  (e)s9mate	
  –	
  for	
  linear	
  problems	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  under	
  assumed	
  error	
  sta9s9cs.	
  



and observations are comparable. Results such as the
one in Fig. 10a, suggesting that only roughly 50% of the
observations lead to positive impact on the 24-h fore-
cast, has led Gelaro et al. (2010) to the conclusion that
operational systems cannot be expected to perform at
theoretical levels. Results displayed in Fig. 10b state
otherwise: operational systems do corroborate the scalar
theoretical analysis. The bulk of the observing system
contributes at exactly the expected theoretical range,
that is, 60%–65% of the assimilated observations con-
tribute positively. This is further corroboration of what
was concluded while examining the result of Fig. 6,
that is, global measures indicate that current operational
data assimilation systems run near optimality. This is
not to say further improvements are not needed or pos-
sible. As results from Fig. 7 have indicated, there is still
plenty of room for improvements when we start looking
more closely. Similarly, results from Fig. 10 suggest work
needs to be done to bring performance of some ob-
serving systems to theoretical levels.

4. Conclusions

Studies of observation impact on the forecast have
relied on the approach put forward by Langland and
Baker (2004). A number of works have followed since.
The present work is a contribution that provides insight
on basic issues behind the technique. A few limitations
and difficulties associated with the basic approach have
been highlighted here, namely: (i) the need to rely on
a norm not directly linked to the underlying data as-
similation cycle; (ii) the need to rely on a verifying state;
(iii) the need to rely on the model adjoint; and last, (iv)
the added computational expense. Though (iii) has been
tackled in the work of Liu and Kalnay (2008) by gen-
eralizing the approach of Langland and Baker to work

within the context of ensemble data assimilation pro-
cedures, the other issues still remain. More complex is
the idea of using observation impacts derived from these
available techniques as an aid to improve on the use of
observations in the corresponding cycling data assimi-
lation system.
The present work identifies two approaches to ob-

servation impacts. The ‘‘traditional’’ method works in
state space, while an alternative is to define measures
of observation impact directly in observation space.
Arguing that results from observation impact studies
must be interpreted statistically, the present work re-
casts the problem in the language of estimation theory.
This allows studying more closely the assumptions in-
volved in the methodology. In particular, it becomes
clear that a state-space approach is more encompassing
than an observation-space approach, simply because ob-
servations span a smaller space than the full state space.
But this advantage quickly disappears when realizing
that the state-space approach requires a verification
state normally not available in practice. Under certain
conditions, the consequences of choosing the analysis
for verification are investigated, showing explicitly how
the corresponding observation impacts carry undesir-
able correlations with the verification. The observation-
space approach, on the other hand, allows verification to
be made against the observations therefore, in principle,
avoiding such undesirable correlations. Furthermore, the
observation-space approach permits evaluating what is
obtained when the analyses, instead of the observations,
are used for verification. It is shown that only under op-
timality can a system be indifferent to whether verifica-
tion is done against the observations or the analyses. It
is recognized in the present work that some of this ad-
vantage disappears in practice since observations are
usually bias corrected, thus making the observations also

FIG. 10. As in Fig. 9, but showing percentage of observations contributing positively to the (a) 24- and (b) 0-h
forecasts. The vertical line in both panels indicates the 50% beneficial mark for reference.
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Do	
  observa9ons	
  always	
  improve	
  es9mate	
  through	
  the	
  analysis	
  step?	
  	
  

Lesson:	
  As	
  long	
  as	
  there	
  are	
  uncertainty	
  in	
  the	
  observa9ons	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  in	
  our	
  models	
  there	
  will	
  always	
  be	
  a	
  considerable	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  frac9on	
  of	
  the	
  data	
  that	
  will	
  deteriorate	
  our	
  es9mate.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Anempts	
  to	
  eliminate	
  observa9ons	
  that	
  seem	
  to	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  offend	
  the	
  es9mate	
  can	
  at	
  best	
  work	
  locally.	
  

(another	
  illustra9on)	
  

From	
  Ehrendorfer	
  	
  (2007)	
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degrading the background
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Figure 2: The probability for degrading the background xb

through analysing observations of varying accuracy, as parameter-
ized through the ratio σo/σb (shown in terms of its logarithm to the
base ten on the abszissa), as obtained through Monte Carlo sam-
pling of Eq. (F.8), with sample sizes of 50 (magenta), 102 (blue), 103

(green), 104 (orange), and 105 (red). The dotted blue curve shows the
expectation of the quantity d ≡ x2a − x2b (see Eq. (F.8)), normalized
by σ2b , with the ordinate to the right applying, again as a function of
varying observation accuracy, as given in Eqs. (F.9) and (F.10).

4.1 The accuracy of analyses

In this section the following question is considered: is it
possible that the background field is degraded in terms
of its quality through assimilating any given observation,
even when it is assumed that all observational and back-
ground error statistics are correctly specified? In other
words, is it possible that the analysis is further away
from the truth than the presently available background?
The answer to this question is affirmative as shown

in the discussion below that is based on the one-
dimensional formulation of the KF analysis equation.
While it is true that through the assimilation of an ob-
servation the analysis-error variance is always smaller
than the background-error variance (see, Eq. (2.6)), this
fact does not imply that analysed field is closer to the
true field on a case-to-case basis. There is in fact a cer-
tain non-zero probability (shown in Fig. 2, see below)
that the analysed field is further away from the true field
than the background is which translates into a degrada-
tion of the background field. The fundamental reason for
seeing this behavior is that the analysed field exhibits
variability, according to its analysis-error variance; or,
stated differently, it is the analysis-error variance that is
smaller than the background-error variance, and not the
accuracy of any individual field on a case-to-case basis.
Apart from the desire to provide a clear and unam-

biguous answer to this often-raised question, at least in
a one-dimensional context, the discussion of the above
issue is included here to illustrate that sampling issues,
namely the relationship between single realizations and

distribution function for d

-3 -2 -1 0 1 2 3
d = x_a^2 - x_b^2
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0.4
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0.8

1.0
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d)

Figure 3: The distribution function F(d) assessed empirically from
the experiment with sample size equal to 105 of Fig. 2 for σo/σb =

10−1 (blue curve), σo/σb = 1 (green curve), and σo/σb = 102 (red
curve). Note that the (theoretical) means of these distribution func-
tions may be read off from the blue dotted curve in Fig. 2 as being
approximately equal to −1, −0.5, and zero, respectively.

the statistics of these realizations, play a role in its inves-
tigation, too. However, since the sampling involved here
is now from the observation-error distribution, these lat-
ter sampling issues are not directly related to the finite
small-sample-size issues in ensemble-based Kalman fil-
tering forming the primary topic of this review.
For a quantitative discussion of the above-stated

question, the quantity d is defined as the difference be-
tween the analysis error and the background error (see,
Eq. (F.8)). Then, whenever the situation d > 0 occurs,
the background field has been degraded. The relation-
ship of an individual realization of d to a realization of
an observation y and a background field realization xb,
is discussed in detail in appendix F for the situation of
the analysis step in a one-dimensional KF. In this dis-
cussion, the analysis step only is considered, without
the subsequent implication on forecast errors. Further,
in this purely static experiment, all statistics are assumed
to be known correctly, and are not derived from cycling
experiments.
As d is a nonlinear function of other random vari-

ables, it is difficult to assess its properties analytically.
Therefore, the chance for the event d > 0 is evaluated
numerically through a Monte Carlo process, essentially
by randomly generating realizations of xa and xb from
their respective pdfs (see Eqs. (F.3) and (F.4)).
The result of these computations is shown in Fig-

ure 2 in terms of the (frequentist) probability for d > 0
as a function of σo/σb (i.e., the ratio of observational-
error and background-error standard deviations, respec-
tively; see also appendix F) for various sampling sizes
in this Monte Carlo process (where σb = 1 has been ar-
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4.1 The accuracy of analyses

In this section the following question is considered: is it
possible that the background field is degraded in terms
of its quality through assimilating any given observation,
even when it is assumed that all observational and back-
ground error statistics are correctly specified? In other
words, is it possible that the analysis is further away
from the truth than the presently available background?
The answer to this question is affirmative as shown

in the discussion below that is based on the one-
dimensional formulation of the KF analysis equation.
While it is true that through the assimilation of an ob-
servation the analysis-error variance is always smaller
than the background-error variance (see, Eq. (2.6)), this
fact does not imply that analysed field is closer to the
true field on a case-to-case basis. There is in fact a cer-
tain non-zero probability (shown in Fig. 2, see below)
that the analysed field is further away from the true field
than the background is which translates into a degrada-
tion of the background field. The fundamental reason for
seeing this behavior is that the analysed field exhibits
variability, according to its analysis-error variance; or,
stated differently, it is the analysis-error variance that is
smaller than the background-error variance, and not the
accuracy of any individual field on a case-to-case basis.
Apart from the desire to provide a clear and unam-

biguous answer to this often-raised question, at least in
a one-dimensional context, the discussion of the above
issue is included here to illustrate that sampling issues,
namely the relationship between single realizations and
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curve). Note that the (theoretical) means of these distribution func-
tions may be read off from the blue dotted curve in Fig. 2 as being
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the statistics of these realizations, play a role in its inves-
tigation, too. However, since the sampling involved here
is now from the observation-error distribution, these lat-
ter sampling issues are not directly related to the finite
small-sample-size issues in ensemble-based Kalman fil-
tering forming the primary topic of this review.
For a quantitative discussion of the above-stated

question, the quantity d is defined as the difference be-
tween the analysis error and the background error (see,
Eq. (F.8)). Then, whenever the situation d > 0 occurs,
the background field has been degraded. The relation-
ship of an individual realization of d to a realization of
an observation y and a background field realization xb,
is discussed in detail in appendix F for the situation of
the analysis step in a one-dimensional KF. In this dis-
cussion, the analysis step only is considered, without
the subsequent implication on forecast errors. Further,
in this purely static experiment, all statistics are assumed
to be known correctly, and are not derived from cycling
experiments.
As d is a nonlinear function of other random vari-

ables, it is difficult to assess its properties analytically.
Therefore, the chance for the event d > 0 is evaluated
numerically through a Monte Carlo process, essentially
by randomly generating realizations of xa and xb from
their respective pdfs (see Eqs. (F.3) and (F.4)).
The result of these computations is shown in Fig-

ure 2 in terms of the (frequentist) probability for d > 0
as a function of σo/σb (i.e., the ratio of observational-
error and background-error standard deviations, respec-
tively; see also appendix F) for various sampling sizes
in this Monte Carlo process (where σb = 1 has been ar-

From	
  Todling	
  	
  (2013)	
  

Some	
  Traps	
  to	
  Avoid	
  

Percentage	
  of	
  observa9ons	
  
contribu9ng	
  to	
  improve	
  the	
  	
  
assimila9on	
  cycle	
  of	
  a	
  real	
  
NWP	
  data	
  assimila9on	
  system.	
  
Contribu9ons	
  are	
  split	
  into	
  
separate	
  components	
  of	
  	
  
observing	
  system	
  over	
  the	
  	
  
month	
  of	
  August	
  2007.	
  	
  



Time	
  averaging	
  provides	
  good	
  means	
  of	
  ge�ng	
  handle	
  on	
  sta9s9cs!	
  

Lesson:	
  Not	
  necessarily.	
  Time	
  averaging	
  
filter	
  sta9s9cs	
  has	
  the	
  tendency	
  to	
  provide	
  
underes9mates	
  of	
  variances,	
  for	
  example.	
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Figure 2. Similar to Fig. 1, but now for a Wiener filter when both components of the state vector are observed and the model is inaccurate
not only in predicting the second component of the state vector but also the first. With two observations available we are able to estimate
the entire, 2⇥ 2-system error covariance matrix, and the bottom panel of Fig. 1 is therefore replaced with the 4-panel set shown on the
right depicting the time series of the estimates of each element of this matrix.
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Figure 3. Similar to the 4-set panel in Fig. 2, but obtained after 30 Monte-Carlo simulations to reliably estimate calculating the expected
cross-covariance (9) through sampled covariances. The time-mea values of the estimate elements appearing in the title of each plot are
simply to give an idea of the overall quality of the estimates.

fully damped toward the end of the period. Estimates obtained for the system error covariance appear in the four panels on
the right and show considerably better values than those obtained with the single realization case of Fig. 2. With a reliable
calculation of the expectation operator obtained from the Monte Carlo simulations, the estimates of each element of Q are
considerably tighter and more representative of the quantities sought after. The time average of the Monte Carlo estimates
for each component are also considerably closer to their true values than they are in Fig. 2 (compare headings on each
panel); the diagonal of Q is estimated to be (0.32762, 3.3138) and the off-diagonal elements are rather close to zero.

(b) The Lorenz 95 dynamics

The damped harmonic oscillator illustration is very simplistic and serves only to give an academic idea of the feasibility
of the estimation procedure of Section 1. One important missing factor in that example is lack of nonlinearity with the
consequent implication that well-behaved suboptimal schemes are rather simple to devise. To add complexity, though still
academic, we now consider estimating system error for an assimilation problem based on the Lorenz (1995) dynamics.
The model is composed of the following set of 40 coupled non-dimensional ordinary differential equations (ODEs), which
we write in the form of a stochastic system of ODEs:

dx
i

= [(x
i+1 � x

i�2)xi�1 � x
i

+ F ] dt+
X

j

g
ij

dw
j

, (17)

for i = 1, 2, · · · , 40, and with periodic boundary conditions

x�1 = x39 , x0 = x40 , x41 = x1 . (18)

We follow Lorenz and Emanuel (1998) and choose the forcing term F = 8 to get solutions within the chaotic regime.
Additionally, we allow for the presence of an additive stochastic forcing term, taken as white with weights given by
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Figure 2. Similar to Fig. 1, but now for a Wiener filter when both components of the state vector are observed and the model is inaccurate
not only in predicting the second component of the state vector but also the first. With two observations available we are able to estimate
the entire, 2⇥ 2-system error covariance matrix, and the bottom panel of Fig. 1 is therefore replaced with the 4-panel set shown on the
right depicting the time series of the estimates of each element of this matrix.
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Figure 3. Similar to the 4-set panel in Fig. 2, but obtained after 30 Monte-Carlo simulations to reliably estimate calculating the expected
cross-covariance (9) through sampled covariances. The time-mea values of the estimate elements appearing in the title of each plot are
simply to give an idea of the overall quality of the estimates.

fully damped toward the end of the period. Estimates obtained for the system error covariance appear in the four panels on
the right and show considerably better values than those obtained with the single realization case of Fig. 2. With a reliable
calculation of the expectation operator obtained from the Monte Carlo simulations, the estimates of each element of Q are
considerably tighter and more representative of the quantities sought after. The time average of the Monte Carlo estimates
for each component are also considerably closer to their true values than they are in Fig. 2 (compare headings on each
panel); the diagonal of Q is estimated to be (0.32762, 3.3138) and the off-diagonal elements are rather close to zero.

(b) The Lorenz 95 dynamics

The damped harmonic oscillator illustration is very simplistic and serves only to give an academic idea of the feasibility
of the estimation procedure of Section 1. One important missing factor in that example is lack of nonlinearity with the
consequent implication that well-behaved suboptimal schemes are rather simple to devise. To add complexity, though still
academic, we now consider estimating system error for an assimilation problem based on the Lorenz (1995) dynamics.
The model is composed of the following set of 40 coupled non-dimensional ordinary differential equations (ODEs), which
we write in the form of a stochastic system of ODEs:

dx
i

= [(x
i+1 � x

i�2)xi�1 � x
i

+ F ] dt+
X

j

g
ij

dw
j

, (17)

for i = 1, 2, · · · , 40, and with periodic boundary conditions

x�1 = x39 , x0 = x40 , x41 = x1 . (18)

We follow Lorenz and Emanuel (1998) and choose the forcing term F = 8 to get solutions within the chaotic regime.
Additionally, we allow for the presence of an additive stochastic forcing term, taken as white with weights given by
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and as before, the approximation becomes an equality when the model and observation operators are linear.
Both (9) and (15) provide a way to estimate the component of system error projected onto the observing network. We

note that (9) is less restrictive than (15) in that the former requires only the smoother to be optimal for the result to be
exact, whereas the latter requires both the filter and smoother to be optimal. In practice, optimality is a strong requirement
for either the filter or the smoother components of the sequential assimilation procedure. Indeed, as remarked earlier, the
left-hand-side of many of the expressions above are generally cross-covariances that only in the optimal case reduce to
covariances. Even with such caveats, expressions (11) are found to be useful in practice and permit extracting information
on background, observation and analysis errors (Desroziers et al. 2005). This suggests that practical data assimilation
systems, i.e., operational systems, run near optimality (Todling 2012). This rationale gives hope for expressions (9) and
(15) to become useful in helping estimate and diagnose system errors. A relevant question, addressed in what follows,
is whether we can estimate system error when the underlying suboptimal filter assumes the model to be perfect – which
is what most current operational assimilation systems do. Furthermore, we might ask how the sequential approach above
connects with the variational approach; in this respect, some algebraic analysis is presented in Part II of this work to recast
the lag-1 sequential procedure for system error estimation into a variational formulation.

3. Illustrations: applications to idealized models in the sequential framework

We provide now two illustrations of the idea laid out in the previous section. The first is an application to a very simple
linear damped harmonic oscillator where optimality issues can be fully and precisely investigated. The second is an
application to the Lorenz (1995) chaotic dynamics where, additionally, we can examine how nonlinearity might affect the
estimation results. We should emphasize that the goal here is to study the problem of estimating system error and not the
data assimilation schemes; obviously, we strive to have reliable schemes in all that is considered here.

(a) The linear harmonic oscillator

Many flavors of the estimation problem for the classical harmonic oscillator disturbed by noise can be found in the
literature. Here we take the form of the problem as studied in Example 10.3 of Maybeck (1982, pp. 90-95). Consider the
true dynamical and observing processes to be

x
k

=


0 1
�1 �0.8

�
x
k�1 + q

k

, (16a)

yo

k

= Hx
k

+ ✏
k

, (16b)

respectively, where q
k

and ✏
k

are zero-mean white Gaussian processes with time-independent covariances Q
k

= Q and
R

k

= R to be specified below. The parameters in the dynamics are such that they simulate a damped harmonic oscillator
with two stable modes.

The true initial state is taken to be x0 = [10 10]T , and the initial state estimate is drawn from a normal distribution,
N (x0,P0), with mean x0 and a diagonal covariance P0 with variances equal to 100 in both elements of the state vector
– that is, initially, very little is known about the state. Recall that, under appropriate circumstances, the initial conditions
are rather quickly forgotten by the linear Kalman filter (e.g., Jazwinski 1970, section 7.10). Simulations are conducted for
a total of k = 100 sampling steps. Let us now consider a couple of situations.
Optimal case

We begin by using the linear Kalman filter and lag-1 smoother, which are optimal when the statistics of errors are known.
Take the following choices for the observing network, and system and observation errors: H

k|k�1 = H = [1 0]T , Q
k

=
diag(0, 10/3), and R

k

⌘ r = 0.1, respectively. This choice corresponds to a situation in which modeling uncertainty is
only present in the second (velocity) component of the 2-element state vector x

k

, and only the first (position) element
of the state vector is observed. The signal-to-noise ratio is such that smoothing provides considerable improvement over
filtering when estimating x2 but not much noticeable improvement in the estimates of x1. This is simply a consequence
of the fact that the Kalman filter estimates become quickly accurate for x1 given the available measurements of this
component, and the lack of observations for x2 (see Maybeck 1982, Examples 8.1-3, for full discussion of the effects of
different signal-to-noise scenarios for this system).

A typical realization of the state evolution with this choice of parameters is displayed in Fig. 1. The top and middle
panels show the time evolution of the first and second components of the state vector, respectively. There are three curves
in each panel representing: the true state in red, the filter estimate in blue, and the lag-1 smoother estimate in green. As
mentioned above, both estimates of x1 are so accurate that it is hard to distinguish the three curves beyond the second
sampling time step in the top panel; the filter estimates of x2 (middle panel) are somewhat less accurate and one can see the
blue curve not fully lining up with that for the truth (red curve; nearly invisible); the benefit from calculating lag-1 Kalman
smoother estimates is noticeable since they are essentially indistinguishable from the true state. The time evolution of the
error covariance matrices Pb

k|k�1 and Pa

k

are not shown since, in such a simple problem, they are quite straightforward as
the filter settles quickly into steady state. The error covariance for the smoother estimates can easily be calculated (e.g.,
see Cohn et. al. 1994), but again it becomes straightforward as the smoother too settles quickly into steady state.

The bottom panel of Fig. 1 shows the time series of the model error covariance matrix projected onto the observation
space, H

k|k�1Qk

HT

k|k�1, and the time series of the sampled cross-covariance matrix �
k|k�1,k �R

k

, where R
k

is taken
to be known; these quantities are scalars in the present, single observation case. The matrix �

k|k�1,k is calculated from
the outer product of the OMB and OMRF residuals at each time, for the single realization currently available. Since only
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and as before, the approximation becomes an equality when the model and observation operators are linear.
Both (9) and (15) provide a way to estimate the component of system error projected onto the observing network. We

note that (9) is less restrictive than (15) in that the former requires only the smoother to be optimal for the result to be
exact, whereas the latter requires both the filter and smoother to be optimal. In practice, optimality is a strong requirement
for either the filter or the smoother components of the sequential assimilation procedure. Indeed, as remarked earlier, the
left-hand-side of many of the expressions above are generally cross-covariances that only in the optimal case reduce to
covariances. Even with such caveats, expressions (11) are found to be useful in practice and permit extracting information
on background, observation and analysis errors (Desroziers et al. 2005). This suggests that practical data assimilation
systems, i.e., operational systems, run near optimality (Todling 2012). This rationale gives hope for expressions (9) and
(15) to become useful in helping estimate and diagnose system errors. A relevant question, addressed in what follows,
is whether we can estimate system error when the underlying suboptimal filter assumes the model to be perfect – which
is what most current operational assimilation systems do. Furthermore, we might ask how the sequential approach above
connects with the variational approach; in this respect, some algebraic analysis is presented in Part II of this work to recast
the lag-1 sequential procedure for system error estimation into a variational formulation.

3. Illustrations: applications to idealized models in the sequential framework

We provide now two illustrations of the idea laid out in the previous section. The first is an application to a very simple
linear damped harmonic oscillator where optimality issues can be fully and precisely investigated. The second is an
application to the Lorenz (1995) chaotic dynamics where, additionally, we can examine how nonlinearity might affect the
estimation results. We should emphasize that the goal here is to study the problem of estimating system error and not the
data assimilation schemes; obviously, we strive to have reliable schemes in all that is considered here.

(a) The linear harmonic oscillator

Many flavors of the estimation problem for the classical harmonic oscillator disturbed by noise can be found in the
literature. Here we take the form of the problem as studied in Example 10.3 of Maybeck (1982, pp. 90-95). Consider the
true dynamical and observing processes to be
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respectively, where q
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and ✏
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are zero-mean white Gaussian processes with time-independent covariances Q
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= Q and
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= R to be specified below. The parameters in the dynamics are such that they simulate a damped harmonic oscillator
with two stable modes.

The true initial state is taken to be x0 = [10 10]T , and the initial state estimate is drawn from a normal distribution,
N (x0,P0), with mean x0 and a diagonal covariance P0 with variances equal to 100 in both elements of the state vector
– that is, initially, very little is known about the state. Recall that, under appropriate circumstances, the initial conditions
are rather quickly forgotten by the linear Kalman filter (e.g., Jazwinski 1970, section 7.10). Simulations are conducted for
a total of k = 100 sampling steps. Let us now consider a couple of situations.
Optimal case

We begin by using the linear Kalman filter and lag-1 smoother, which are optimal when the statistics of errors are known.
Take the following choices for the observing network, and system and observation errors: H

k|k�1 = H = [1 0]T , Q
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=
diag(0, 10/3), and R
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⌘ r = 0.1, respectively. This choice corresponds to a situation in which modeling uncertainty is
only present in the second (velocity) component of the 2-element state vector x
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, and only the first (position) element
of the state vector is observed. The signal-to-noise ratio is such that smoothing provides considerable improvement over
filtering when estimating x2 but not much noticeable improvement in the estimates of x1. This is simply a consequence
of the fact that the Kalman filter estimates become quickly accurate for x1 given the available measurements of this
component, and the lack of observations for x2 (see Maybeck 1982, Examples 8.1-3, for full discussion of the effects of
different signal-to-noise scenarios for this system).

A typical realization of the state evolution with this choice of parameters is displayed in Fig. 1. The top and middle
panels show the time evolution of the first and second components of the state vector, respectively. There are three curves
in each panel representing: the true state in red, the filter estimate in blue, and the lag-1 smoother estimate in green. As
mentioned above, both estimates of x1 are so accurate that it is hard to distinguish the three curves beyond the second
sampling time step in the top panel; the filter estimates of x2 (middle panel) are somewhat less accurate and one can see the
blue curve not fully lining up with that for the truth (red curve; nearly invisible); the benefit from calculating lag-1 Kalman
smoother estimates is noticeable since they are essentially indistinguishable from the true state. The time evolution of the
error covariance matrices Pb

k|k�1 and Pa

k

are not shown since, in such a simple problem, they are quite straightforward as
the filter settles quickly into steady state. The error covariance for the smoother estimates can easily be calculated (e.g.,
see Cohn et. al. 1994), but again it becomes straightforward as the smoother too settles quickly into steady state.

The bottom panel of Fig. 1 shows the time series of the model error covariance matrix projected onto the observation
space, H

k|k�1Qk
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k|k�1, and the time series of the sampled cross-covariance matrix �
k|k�1,k �R
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, where R
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is taken
to be known; these quantities are scalars in the present, single observation case. The matrix �

k|k�1,k is calculated from
the outer product of the OMB and OMRF residuals at each time, for the single realization currently available. Since only
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Figure 1. Illustration of the lag-1 residual cross-covariance approach for estimating model error estimation: optimal filter case. Top and
middle panels embed three curves: red for the truth; green for filter estimate; and blue for lag-1 smoother estimate. The bottom panel
shows the diagonal of the single-realization cross-covariance in (1), which provides an estimate of the model error variance at each
time. The true value of the error variance (Qt) can be compared with the rough estimate obtained by averaging the sample estimates
over time (Qe).

the first component of the 2-element state vector x
k

is observed, only element (1, 1) of the model error covariance can be
estimated in this case. That is, in this case, only the perfect component of the model can be estimated. The figure shows the
true value, Q

t

= 0, of this element as the black solid line. The cross-covariance estimates (magenta curve) bounce around
the true value of the error, becoming negative as a consequence of it being estimated on the basis of a single realization of
the residual cross-covariance — since the filter is optimal. A rough estimate of this component of the error can be obtained
by averaging the estimates over time to obtain Q

e

= �0.014369. That the averaged result is negative is not so alarming,
and also serves as good reminder that time averaging is not a proper replacement for the expectation operator in (9).
Suboptimal case

Clearly the observing system in the example just considered is not the best to estimate the most interesting part of
the system error. We consider next a situation where the observing system measures both components of the state vector
with similar accuracy, that is, we now take H

k|k�1 = I, with R
k

= 0.1I. Furthermore, we take both components of
the dynamical system (16a) to be uncertain, but still consider the first component to be more accurately modeled than the
second by choosing the system error covariance to be Q = diag(1/3, 10/3). This resetting of observing system and model
uncertainties also amounts to a fairly simple case. Therefore, we add a degree of difficulty to the problem by replacing the
optimal filter with a suboptimal filter, chosen to be a Wiener filter in this case. This is aimed at helping us investigate the
practical question of whether the procedure proposed in Section 1 is able to provide estimates of system error covariance
parameters under suboptimality. The Wiener filter is obtained by fixing the Kalman gain matrix in (13) to be that of the
nearly asymptotic (step k = 100) integration of a corresponding Kalman filter run conducted for the present case, which
is

K̃
k

= K̃ =

✓
0.81057450628741 0.00511881474310
0.00511881474310 0.97194107724266

◆
.

Figure 2 displays the results in this case. The two panels on the left correspond to the top two panels in Fig. 1 and
indicate that even though the filter is suboptimal, the estimates from both filter and smoother are quite good – one cannot
visually distinguish the filter and smoother estimates from the truth. The four panels on the right show the time series
of each of the four elements of the 2⇥ 2 system error matrix Q as estimated from the sample cross-covariance in (9).
As before, each panel shows two single numbers on its heading reflecting the true value of that element of Q and its
estimated value obtained from the time average of the estimates obtained in the course of the assimilation period. Again,
time-averaged results must be interpreted carefully and only represent a rough estimate of each component. As for the
optimal case considered before, the estimates here are also obtained from a single realization of the residuals and show
considerable variation from time to time. For example, estimates of element Q(1, 1) sometimes show quite large spikes
suggesting system error to be as large as 2, when the true value is only 1/3. This is a reminder again that instantaneous
single realization estimates may seem rather meaningless at times; even the time-averaged value, 0.27136, is not such a
great estimate of this component; the same can be said of the other components. Still, even this single-realization estimate,
obtained on the basis of a suboptimal filter, captures the fact that system errors are present; that there is a substantial
difference between errors in the first and second components of the state vector; and that covariant (off-diagonal) errors
are largely absent.

To further emphasize the significance of single- versus multiple-realization sampled errors, we experiment with a 30-
sample Monte Carlo simulation for this suboptimal Wiener filter case. Figure 3 summarizes the results. Though similar to
Fig. 2, the quantities plotted here correspond to Monte Carlo averages. First notice the two panels on the left, showing the
time series of the mean estimates for each component of the state vector, and how they now display the behavior expected
from a (deterministic) damped harmonic oscillator — more Monte Carlo samples would be needed to see the state more
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Figure 1. Illustration of the lag-1 residual cross-covariance approach for estimating model error estimation: optimal filter case. Top and
middle panels embed three curves: red for the truth; green for filter estimate; and blue for lag-1 smoother estimate. The bottom panel
shows the diagonal of the single-realization cross-covariance in (1), which provides an estimate of the model error variance at each
time. The true value of the error variance (Qt) can be compared with the rough estimate obtained by averaging the sample estimates
over time (Qe).
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estimated in this case. That is, in this case, only the perfect component of the model can be estimated. The figure shows the
true value, Q
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= 0, of this element as the black solid line. The cross-covariance estimates (magenta curve) bounce around
the true value of the error, becoming negative as a consequence of it being estimated on the basis of a single realization of
the residual cross-covariance — since the filter is optimal. A rough estimate of this component of the error can be obtained
by averaging the estimates over time to obtain Q
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= �0.014369. That the averaged result is negative is not so alarming,
and also serves as good reminder that time averaging is not a proper replacement for the expectation operator in (9).
Suboptimal case

Clearly the observing system in the example just considered is not the best to estimate the most interesting part of
the system error. We consider next a situation where the observing system measures both components of the state vector
with similar accuracy, that is, we now take H

k|k�1 = I, with R
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= 0.1I. Furthermore, we take both components of
the dynamical system (16a) to be uncertain, but still consider the first component to be more accurately modeled than the
second by choosing the system error covariance to be Q = diag(1/3, 10/3). This resetting of observing system and model
uncertainties also amounts to a fairly simple case. Therefore, we add a degree of difficulty to the problem by replacing the
optimal filter with a suboptimal filter, chosen to be a Wiener filter in this case. This is aimed at helping us investigate the
practical question of whether the procedure proposed in Section 1 is able to provide estimates of system error covariance
parameters under suboptimality. The Wiener filter is obtained by fixing the Kalman gain matrix in (13) to be that of the
nearly asymptotic (step k = 100) integration of a corresponding Kalman filter run conducted for the present case, which
is
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Figure 2 displays the results in this case. The two panels on the left correspond to the top two panels in Fig. 1 and
indicate that even though the filter is suboptimal, the estimates from both filter and smoother are quite good – one cannot
visually distinguish the filter and smoother estimates from the truth. The four panels on the right show the time series
of each of the four elements of the 2⇥ 2 system error matrix Q as estimated from the sample cross-covariance in (9).
As before, each panel shows two single numbers on its heading reflecting the true value of that element of Q and its
estimated value obtained from the time average of the estimates obtained in the course of the assimilation period. Again,
time-averaged results must be interpreted carefully and only represent a rough estimate of each component. As for the
optimal case considered before, the estimates here are also obtained from a single realization of the residuals and show
considerable variation from time to time. For example, estimates of element Q(1, 1) sometimes show quite large spikes
suggesting system error to be as large as 2, when the true value is only 1/3. This is a reminder again that instantaneous
single realization estimates may seem rather meaningless at times; even the time-averaged value, 0.27136, is not such a
great estimate of this component; the same can be said of the other components. Still, even this single-realization estimate,
obtained on the basis of a suboptimal filter, captures the fact that system errors are present; that there is a substantial
difference between errors in the first and second components of the state vector; and that covariant (off-diagonal) errors
are largely absent.

To further emphasize the significance of single- versus multiple-realization sampled errors, we experiment with a 30-
sample Monte Carlo simulation for this suboptimal Wiener filter case. Figure 3 summarizes the results. Though similar to
Fig. 2, the quantities plotted here correspond to Monte Carlo averages. First notice the two panels on the left, showing the
time series of the mean estimates for each component of the state vector, and how they now display the behavior expected
from a (deterministic) damped harmonic oscillator — more Monte Carlo samples would be needed to see the state more
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Robust	
  es9ma9on	
  can	
  be	
  achieved	
  with	
  adap9ve	
  procedures	
  

Something	
  to	
  Keep	
  in	
  Mind	
  

The	
  assimila9on	
  scheme	
  here	
  is	
  an	
  adap9ve	
  op9mal	
  interpola9on.	
  In	
  this	
  case,	
  the	
  
propagated	
  error	
  covariance	
  (the	
  costly	
  part	
  of	
  the	
  EKF)	
  is	
  replaced	
  by	
  a	
  constant	
  forecast	
  
error	
  covariance	
  matrix	
  scaled	
  by	
  a	
  single	
  parameter	
  that	
  gets	
  to	
  be	
  adap9vely	
  es9mated	
  on	
  
the	
  basis	
  of	
  the	
  observa9on-­‐minus-­‐forecast	
  residuals	
  (see	
  Dee	
  1995).	
  The	
  9me	
  series	
  of	
  the	
  
es9mated	
  parameter	
  is	
  displayed	
  in	
  the	
  lower	
  panel	
  above.	
  



Closing	
  Remarks	
  
Ø Solid	
  understand	
  of	
  the	
  three	
  es9mates	
  (MV,	
  
MAP,	
  ML)	
  examined	
  here	
  gives	
  a	
  broad	
  
perspec9ve	
  on	
  es9ma9on	
  problems.	
  

Ø Most	
  methods	
  employed	
  in	
  prac9ce	
  fall	
  under	
  
the	
  LS-­‐type	
  category.	
  

Ø Adap9ve	
  procedures	
  are	
  typically	
  the	
  most	
  
robust	
  –	
  viz.	
  modern	
  hybrid	
  ensemble-­‐varia9onal	
  
approaches.	
  


