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OVERVIEW

Q All-sky satellite radiance assimilation in TC inner core

[ Ensemble data assimilation for hurricanes with NOAA HWRF

O Shannon information measures — observation impact



MOTIVATION FOR DATA ASSIMILATION IN TC INNER CORE

» Develop a robust and efficient data assimilation for high impact weather events

- tropical cyclones

- severe weather

» Focus on assimilation of cloud and precipitation affected satellite measurements
to gain information about high-resolution TC structure

» Assimilate cloudy radiance from various sources:
- microwave, infrared, lightning

- combine information from different sources to find most beneficial
combinations

» Utilize operational codes as much as possible, focus on realistic issues
- WRF NMM, HWRF
- GSI
- CRTM



NONLINEAR DA UNCERTAINTY SUBSPACE FORMULATION

1) Initial state and uncertainty: Define an initial state and a subspace (span-vectors)

[xo,span{ul.o}] x' =x'+u; (i=1,..,N,)

2) Prediction: Transport the uncertainty span-vectors in time by a prediction model

x'=mxh 1 1 1
u =Mx'" +u)-Mx')
x'+u = Mx +u

3) Analysis: Maximum a posteriori estimate max A(X |Y) = min[—ln P(X 1Y )]

y=%(x")

[x(x")
y+v, =% (x"+u,)

v, =K(x' +u;)-K(x")

Uncertainty




ERROR COVARIANCE LOCALIZATION BY MODEL DYNAMICS

> Nonlinear dynamical systems have a natural capability to localize and scale

perturbations

- important to maintain that capability in DA
> Due to severe restriction of ensemble size in high-dimensional application,

localization is still needed.

Figure 1. (a) The field u in coupled logistic

maps (L = 1024); (b) the instantaneous profile

of the corresponding Lyapunov vector at the RS

same time as u; (c) the profile of the

Lyapunov vector in the logarithmic scale. 1{

(from Pikovsky and Politi 1998) ol
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Lyapunov vector w

ut+1L,x)=>10-2e)f(u(t,x))+e(f(u(t,x-1))+ f(u(t,x +1)))
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RECURSIVE ENSEMBLE DA EXAMPLE (KF)

» Assume there is an initial error covariance at =0 with columns a; (N, =ensemble dimension)

Ao=[a1 a, - aNE]

» Denote
forecast analysis scaling
-1/2
F = Pfl/2 A= Pa”2 S [1 " (R_WHP;/Z )T (R‘”zHme)]

> Recursive formula for reduced-rank DA

Analysis step (dynamically preferred):
For the k-th data assimilation cycle (k=1,2,...): y p (dy yp )

Analysis approximations Dynamically preferred

Analysis step: A = ESS™ A =ES,

Forecast step : F =M A" k. =MA_



RECURSIVE ENSEMBLE DA EXAMPLE (KF)

Given an initial uncertainty matrix A,

Cycle 1 ||:: > F=MA4,
Al = FlS1 = MIAOSI

FF=MA_=MM, .. MASS,..S,._
Cycle k ||:|'>
A=FS =MM, .. .MASS,..S,

MM, ..MA =M(t_t,)M(t_.t,,)...M(t,.1,) Ay = M (2,,1,) A,

Long forecast

Scaling

Forecast uncertainty after k data assimilation cycles:

F, =[M(ty,1 )ALS,S, .S, 1 = [(MA)

MA0=M[a1 a, - aNE:|=[Ma1 Ma, --- MaNE]

The forecast uncertainty is a scaled, long “ensemble” forecast




ENSEMBLE DA RELATION TO LYAPUNOV EXPONENTS

» Lyapunov exponent (1) measures the separation between two trajectories in phase space

0Z,| = "[6Z,|
ItA

A =lim lim -In——
== 20=0¢ |8Z,]

a a, ... a
In our notation: 6ZO=AO=(:1 2 K)

<6Zt) =Mz(x0+ai)_M;(xo) = 5thMtA0

i

> Perturbations directions ((SZ[ )i are Lyapunov vectors when {—

» Lyapunov exponents form a so-called Lyapunov spectrum {7&1 ,?uz,---,?»,,}
which is relevant for information dimension of the system (e.g., Kaplan-Yorke dimension)

Ensemble DA that produces uncertainties spanned by Lyapunov vectors can:
- optimally control dominant instabilities in a dynamical system

- have uncertainties localized by model dynamics

(Carrassi et al. 2009)



ENSEMBLE DA ALGORITHM USED FOR ASSIMILATION IN
TC INNER CORE

* Maximum Likelihood Ensemble Filter (MLEF)

- well-suited for nonlinear analysis problems
- cost function minimization

- implicit Hessian preconditioning

- flow-dependent ensemble error covariance

- error covariance localization of Yang et al. (2009)

 NOAA Hurricane WRF (HWRF) (27:9 km)
- Ferrier microphysics (total cloud condensate)

« GSI forward component
- no adjoint, background, or minimization

« CRTM as forward operator for assimilation of all-sky radiances

» Calculations on JCSDA S4 computer



MLEF IS AN ENSEMBLE DATA ASSIMILATION SYSTEM BASED
ON CONTROL THEORY

Forecast:
x' = Mm(x*)

Pj}’2=[plf pl . p,{] pl = M(x" + p}') - M (x")

Change of variable (Hessian preconditioning):
-1/
x-x/ = P2 (142 Z(H) g

Z(x)=[zl(x) z,(x) .. Zn(x)] Zl.(x)=R_I/Z[YC(X+6X)—7C()C)]

-1/2

(1+zG/yzaH)  =v(1+A) U

Analysis (iterative minimization):

t->k+1 = t—’k + akdk

_ --1/2
x*=x" + PP+ Z(x") Z(x")

opt

-1/2

})al/Z — PJ}/Z 'I+Z(xa)TZ(xa)'



HESSIAN PRECONDITIONING AND COST FUNCTION

Cost function: J(x)= %(x —x' )T [Pf'1 ]ens (x - xf) + %[y - YC(x)]T R [y - 7C(x)]

Hessian: _ 82_{ _ Pf—l + KTRK = Pf—T/2(] + ZTZ)Pf—l/2 H = EET
0x

Optimal change of variable: X-x, = E'C= me(l AVA

since K?; =E'KE"=E'EE'E" =1

Geometric interpretation of Hessian preconditioning in MLEF:

Physical space

J=const.
IED D

Preconditioning space

J:

const.



NON-DIFFERENTIABLE RT OBSERVATION OPERATORS

» All-sky radiative transfer calculation has two computational branches:

- clear-sky
- cloudy/precipitation-affected

» Decision about required calculation depends on model variables, thus
creates a discontinuity in gradient and/or cost function

» Since commonly used iterative minimization is gradient-based,
non-differentiability could have a large impact on the analysis (Steward et

al. 2011) X

K (x)

clear-sky conditions cloudy conditions

K (x)=

c(x) xe&C
s(x) x&C

s(x)

c(x)

-
>

xEC x&C x

Assimilation of all-sky radiances may benefit from non-differentiable
minimization, or other means of addressing discontinuities




IMPACT OF MINIMIZATION IN ALL-SKY MW RADIANCE DA:
HURRICANE DANIELLE (2010)

TRMM precipitation radar

: One minimization iteration Two minimization iterations
observations
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- Assimilation of AMSU-A all-sky radiances with HWRF-MLEF
- TC circulation represented by total cloud condensate (g/kg)
- Solid lines represent the MSLP (hPa)

- The plots are for DA cycle 8 valid 1200 UTC 26 August 2010



RELEVANCE OF MICROPHYSICAL CONTROL VARIABLES

Adjustment of microphysical control variables:

- provides a more complete control of initial conditions
- allows most direct impact of cloud observations on the analysis
- critical for high impact weather (e.g., TC and severe weather)

Microphysics control variables: impact on DA
(wind-storm Kyrill (2007) in Europel )

No cloud ice adjustment With cloud ice adjustment

5-10 K

S25K | =/—‘\>

L —— o

Temperature analysis increment at 850 hPa

Physically unrealistic analysis adjustment without
hydrometeor control variable (cloud ice in this example)




FORECAST ERROR COVARIANCE: ALGEBRA

Complex inter-variable correlations
(e.g., standard dynamical variables and microphysical variables)

Pdd Pdc
Pf = ,
Pdc })cc
Correlations between dynamical variables Correlations between microphysical variables
PT,T PT,p PT,V Pice,ice Pice,snow ice,rain
Pdd = PT’p Pp,p Pp,v Pcc = Pice,snow })snow,snow Pxnow,rain
PT,V Pp,v Pv,v ice,rain Psnow,rain rain,rain

Cross-correlations between dynamical and microphysical variables

PT,ice PT,snow PT,rain
Pdc = Pp,ice P ,Snow p.rain
Pv,ice I)v,snow v,rain

Only P, is well known:

- Correlations among microphysical variables not well known

- Even less known correlations between dynamical and microphysical variables




SIGNIFICANCE OF FORECAST ERROR COVARIANCE

Singular value decomposition (SVD) of forecast error covariance
1/2 T
P~ = Eal.ul.vl.
i

i 1-1
Kalman Filter and EnKF solution x-x’ =P,K" _KPfKT +R] (y- Kx')= Pz,

- 1-1
Zgr =P/"K"|KP.K' +R| (y—Kx')
Similar is true for variational DA: x—x' =P ;/ZZVAR

Analysis correction of variational and ensemble DA can be represented as a linear
combination of the forecast error covariance singular vectors u;

a f_ pl2_ _ T_
X" —Xx —Pf z—zaiuiviz—zyiui
i i

Structure of forecast error covariance defines analysis correction!

Fundamentally important to have adequate forecast error covariance.




FORECAST ERROR COVARIANCE STRUCTURE

Use single observation experiment to assess the structure:

x—x' =P,K"[KPK" +R] [y-#(x)]

K=1,
P e e
xt=x" = PP+ R [y-K ()]} = p'jl pj,; p;n 1:k =
p.nl pn;c p;m 0

Pk

pnk

Analysis increment proportional to a column of forecast error covariance




SINGLE OBSERVATION OF SPECIFIC HUMIDITY

- Hurricane Gustav (2008)
- HWRF-MLEF data assimilation system

HWRF-MLEF analysis response to single specific humidity (Q) observation at 850 hPa

Q analysis at 850 hPa  Vertical cross-section of Q analysis at 26.75 N

Cov, Q Q, lat=26.75N

Cov, Q Q, z=9 (~850 hPa)

=
2050 \/_/\
200

0.8
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0.4
0.3
0.2
0.1

GrADS: COLA/IGES

The results are valid for hurricane Gustav (2008) at 1200 UTC on August 31,
2008. The cross denotes the location of observation.

Well-defined, localized analysis response




SINGLE OBSERVATION OF CLOUD SNOW AT 650 HPA

(a) Snow at 34N (Pg,,,w snow) (b) Rain at 34N (P

rain,snow)

Cov, QSNOW QSNOW, lat=33.65 Cov, QSNOW QRAIN, lat=33.65
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Difficult to model rain-snow correlation:
non-centered response and time-dependence




ASSIMILATION OF ALL-SKY AMSU-A RADIANCES WITH HWRF-MLEF

a) IR b) PR
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(a) Enhanced Infrared (IR) Imagery at 1145 UTC 26 Aug 2010 (Unit: K); (b) AMSU-retrieved
precipitation rate map from MetOp-A at 1311 UTC 26 Aug 2010 (Unit: mm h-1). Distribution
of the 6-h total column condensate (Colored; Unit: Kg m-2) forecasts start from cycle 7
analyses of (c) the CTL experiment, and (d) the ASR experiment, superposed with mean
sea-level pressure and 10-m above ground wind barbs from, valid at 1200 UTC 26 Aug
2010. (Figure 7 from Zhang et al. 2012)



SHANNON INFORMATION MEASURES FOR ALL-SKY
RADIANCES (AND OTHER OBSERVATIONS)

Use information theory (e.g. entropy) as an objective, pdf-based
quantification of information (Rodgers 2000; Zupanski et al. 2007):

« Change of entropy
* Relative entropy

* Mutual information

Entropy Change of entropy due to observations
H{X} =~ p(x)log(p(x))dx AH = H{X}-H{XY}
Relative entropy Mutual information

R{X1Y.X}=- W Ioe P e pixeyt o )log oY),
{ } f plrlyiog p(x) ’ ) f pley) ng(X)p(y) .

How applicable are these measures to realistic data assimilation?




INFORMATION MEASURES FOR GAUSSIAN PDFS

« Gaussian pdfs greatly reduce the complexity, since entropy is related
to covariance

* Applicable to commonly used data assimilation algorithms

Change of entropy / degrees of freedom for signal (DFS)

AH =d_ = trace[l - Pan'l]

In realistic ensemble methods d, can be computed exactly in ensemble subspace

P,=P(1+2'Z) P" Z=R'"HP)" Z'Z =UAU"
A2
d = zmce[(l + ZTZ)‘IZTZ] d, = E 1+ A2

i

Since eigenvalues of the matrix Z’Z are known and the matrix inversion is
defined in ensemble space, the flow-dependent d, can be computed




ALL-SKY RADIANCE OBSERVATION INFORMATION CONTENT
(DEGREES OF FREEDOM FOR SIGNAL — DFS)

MW: AMSR-E all-sky radiance data assimilation (Erin, 2007)
(from Zupanski et al. 2011, J. Hydrometeorology)

OBS 89v GHz Tb Wind analysis uncertainty (500 Degrees of Freedom for Signal

0BS 89GHz TbV

IR: Assimilation of synthetic GOES-R ABI (10.35 mm) all-sky radiances (Kyrill, 2007)
(from Zupanski et al. 2011, Int. J. Remote Sensing)

METEOSAT Imagery valid at Cloud ice analysis uncertainy Degrees of Freedom for
19:12 UTC 18 Jan 2007 Signal (DFS)

e
o

o

Analysis uncertainty and DFS are flow-dependent, largest DFS in cloudy areas of the storm.




DFS FOR ALL-SKY AMSU-A: HURRICANE DANIELLE (2010)

ASR — all-sky

CSR — clear-sky

SND - all-sky,
excluding
AMSU-A
channels 1-4
and 15

(From Zhang et
al. 2012)




GOES-R GLM PROXY: WWLLN LIGHTNING OBSERVATION ASSIMILATION

Preliminary results: Assimilation of WWLLN lightning observations using WRF-NMM

DFS

Rodgers Information Content

WWLLN Lightning Observations Forecast RMS error
T S L | | |

40N

Lightning Flash Rate 6-hour forecast error
(#hits/kmZhr)

5.00e-02
4.80E-02

g 4.60E-02
1]

00k »
I = 4.40e-02 NO-0BS
003 =

4.20E-02 SEEREELIGHTNING

4.00E-02
b 12 18

30N — : : —

Analyslis cycle (hr)

90w 85W

- DFS shows the utility of lightning observations in the analysis

- 6-hour WRF-NMM forecast improved due to assimilating lightning observations




FUTURE

» Important to develop capability to extract maximum information from cloudy and
precipitation-affected radiances

» Inner core all-sky satellite radiance observations are critical for improved
analysis and prediction of hurricanes

» Cloudy radiance assimilation: computation aspects
- RT computation can increase 2-3 times with scattering
- number of observations can increase by an order of magnitude due to cloudy information

- 20-30 times more expensive to compute — need parallelization, code optimization

» Shannon entropy measures are useful tool for assessing the impact of all-sky
radiance assimilation

» Combine information from various sources: GOES-R, JPSS (MW, IR, Lightning)
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ITERATIVE MINIMIZATION

Minimize cost-function f(x)

2-D

[ )
X

Iterative approach: Xeot = X + 004,
X control vector

d descent direction

o step length

Iterative minimization can be used in both ensemble and variational DA




HESSIAN PRECONDITIONING:
GEOMETRIC INTERPRETATION

Physical space

Preconditioning space

S

J=const.

In realistic applications x(Q)~0O(103-108). Hessian

preconditioning is critical for efficient minimization.




ASSIMILATION OF ALL-SKY AMSU-A RADIANCES WITH HWRF-MLEF:
IMPACT ON HURRICANE INTENSITY FORECAST
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Hurricane Danielle (2010): Time series of the minimum sea level
pressure (hPa) and NHC best track data (thick grey line), and MLEF-
HWRF experiment outputs (colored lines) between 1800 UTC 24 Aug
and 1800 UTC 26 Aug 2010 in 6 hour DA intervals.



