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q   All-sky satellite radiance assimilation in TC inner core 
 
q  Ensemble data assimilation for hurricanes with NOAA HWRF 

q   Shannon information measures – observation impact 
 

Overview 



Motivation for data assimilation in TC inner core 
 

Ø  Develop a robust and efficient data assimilation for high impact weather events 
 - tropical cyclones 

 - severe weather 

 

Ø  Focus on assimilation of cloud and precipitation affected satellite measurements 
to gain information about high-resolution TC structure 

 

Ø  Assimilate cloudy radiance from various sources:  
 - microwave, infrared, lightning 

 - combine information from different sources to find most beneficial 
 combinations 

 

Ø  Utilize operational codes as much as possible, focus on realistic issues 
 - WRF NMM, HWRF 

 - GSI 

 - CRTM 

Ø  Assimilate cloudy radiance from various sources:  
 - microwave, infrared, lightning 

 - combine information from different sources to find most beneficial combinations 



Nonlinear DA uncertainty subspace formulation 

1) Initial state and uncertainty: Define an initial state and a subspace (span-vectors)   

 x
0 , span{ui

0}!" #$ xi
0 = x0 + ui

0 ; (i = 1,…,NE )

2) Prediction: Transport the uncertainty span-vectors in time by a prediction model  

  x
t = M (x t−1)

  x
t + ui

t = M (x t−1 + ui
t−1) }

 
 x

t , span{ui
t}!" #$ ui

t = M (x t−1 + ui
t−1) −M (x t−1)

3) Analysis: Maximum a posteriori estimate maxP(X |Y ) = min − lnP(X |Y )[ ]

y +vi =K (x
t +ui ) }

 
K (x t ), span{vi}!" #$ vi =K (x

t +ui )−K (x
t )

Uncertainty 

y =K (x t )



Error covariance localization by model dynamics 

Ø  Nonlinear dynamical systems have a natural capability to localize and scale  

perturbations   
 - important to maintain that capability in DA  

Ø  Due to severe restriction of ensemble size in high-dimensional application,  

localization is still needed.  

Figure 1. (a) The field u in coupled logistic 
maps (L = 1024); (b) the instantaneous profile 
of the corresponding Lyapunov vector at the 
same time as u; (c) the profile of the 
Lyapunov vector in the logarithmic scale. 
(from Pikovsky and Politi 1998) 

u(t +1, x) = (1− 2e) f (u(t, x))+ε( f (u(t, x −1))+ f (u(t, x +1)))
x =1,…,L

!



Recursive ensemble DA example (KF) 

Ø  Assume there is an initial error covariance at t=0 with columns ai  (NE =ensemble dimension) 

F = Pf
1/2 A = Pa

1/2
S = I + R−1/2HPf

1/2( )T R−1/2HPf
1/2( )"

#
$
%

−1/2
forecast analysis scaling 

For the k-th data assimilation cycle (k=1,2,…): 

Forecast step : Fk =MkAk−1

Analysis step: Ak
comp = Fk

compSk
comp

 
A0 = a1 a2  aNE

!" #$

Ø  Denote 

Ø  Recursive formula for reduced-rank DA 

Analysis step (dynamically preferred): 

Fk =MkAk−1
comp

Analysis approximations Dynamically preferred 

Ak = FkSk



Recursive ensemble DA example (KF) 

A0Given an initial uncertainty matrix 

Forecast uncertainty  after k data assimilation cycles: 

 Fk = [M (t0 ,tk )A0 ][S1S2…Sk−1] = [MA0 ][S]

Long forecast 

Scaling 

The forecast uncertainty is a scaled, long “ensemble” forecast 

   

Cycle k  Fk = MkAk−1 = MkMk−1…M1A0S1S2…Sk−1

 Ak = FkSk = MkMk−1…M1A0S1S2…Sk

F1 = M1A0
A1 = F1S1 = M1A0S1

Cycle 1 

 MkMk−1…M1A0 = M tk−1,tk( )M tk−2 ,tk−1( )…M t0 ,t1( )A0 = M t0 ,tk( )A0

 
MA0 = M a1 a2  aNE

!" #$ = Ma1 Ma2  MaNE
!" #$



Ensemble DA relation to Lyapunov exponents  

 
δZ0 = A0 =

a1 a2 … aK
   

"

#$
%

&'
In our notation: 

Ensemble DA that produces uncertainties spanned by Lyapunov vectors can:  

-  optimally control  dominant instabilities in a dynamical system 

-   have uncertainties localized by model dynamics 

δZt ≈ e
λt δZ0

Ø  Lyapunov exponent (λ) measures the separation between two trajectories in phase space 

λmax = limt→∞
lim
δZ0 →0

1
t
ln
δZt
δZ0

δZt( )i =Mt (x0 + ai )−Mt (x0 ) δZt ≈ MtA0⇒

Ø  Lyapunov exponents form a so-called Lyapunov spectrum  λ1,λ2 ,…,λn{ }
which is relevant for information dimension of the system (e.g., Kaplan-Yorke dimension) 

Ø  Perturbations  directions             are Lyapunov vectors when     δZt( )i t→∞

(Carrassi et al. 2009) 



•  Maximum Likelihood Ensemble Filter (MLEF) 
 

 - well-suited for nonlinear analysis problems  
 

 - cost function minimization  
 

 - implicit Hessian preconditioning 
 

 - flow-dependent ensemble error covariance 
 

 - error covariance localization  of Yang et al. (2009) 
 

Ensemble DA algorithm used for assimilation in  
TC inner core 

•  NOAA Hurricane WRF (HWRF) (27:9 km) 
 - Ferrier microphysics (total cloud condensate) 

•  GSI forward component 
 - no adjoint, background, or minimization 

•  CRTM as forward operator for assimilation of all-sky radiances 
 
•  Calculations on JCSDA S4 computer 



MLEF is an ensemble data assimilation system based 
on control theory 

 Change of variable (Hessian preconditioning): 

  ζk+1 = ζk + αk dk

Analysis (iterative minimization): 

  
xa = x f + Pf

1/ 2 I + Z(xa )T Z(xa )!" #$
−1/ 2

ζopt
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1/ 2 I + Z(xa )T Z(xa )!" #$

−1/ 2

   x
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Forecast: 

  
x - x f = Pf

1/ 2 I + Z(x f )T Z(x f )( )−1/ 2
ζ

   
Z(x) = z1(x) z2 (x) ... zn(x)!" #$ zi (x) = R−1/ 2 K (x + δx) −K (x)!" #$
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Hessian preconditioning and cost function 

Geometric interpretation of Hessian preconditioning in MLEF: 

J(x) = 1
2
x − x f( )

T
Pf
−1"# $%ens x − x

f( )+ 12 y−K (x)[ ]T R-1 y−K (x)[ ]

  
H =

∂2 J
∂x2 = Pf

−1 + K T R−1K = Pf
−T / 2 (I + ZT Z )Pf

−1/ 2

Cost function: 

Hessian:  H = EET

  
x - x f = E−Tζ = Pf

1/ 2 (I + ZT Z )−T / 2ζOptimal change of variable: 

since   
K
ζ
= E−1KE−T = E−1EET E−T = I



Non-differentiable RT observation operators 

Ø  All-sky radiative transfer calculation has two computational branches: 
 - clear-sky 
 - cloudy/precipitation-affected 
  

Ø  Decision about required calculation depends on model variables, thus 
creates a discontinuity in gradient and/or cost function 
 

Ø  Since commonly used iterative minimization is gradient-based,  
non-differentiability could have a large impact on the analysis (Steward et 
al. 2011) 

K (x) =
c(x) x ∈C
s(x) x ∉C

#
$
%

&%

Assimilation of all-sky radiances may benefit from non-differentiable 
minimization, or other means of addressing discontinuities  



Impact of minimization in all-sky MW radiance DA: 
Hurricane Danielle (2010) 

-  Assimilation of AMSU-A all-sky radiances with HWRF-MLEF 

-  TC circulation represented by total cloud condensate (g/kg) 

-  Solid lines represent the MSLP (hPa)  

-  The plots are for DA cycle 8 valid 1200 UTC 26 August 2010 

TRMM precipitation radar 
observations One minimization iteration Two minimization iterations 



Relevance of microphysical control variables 

Adjustment of microphysical control variables: 
 - provides a more complete control of initial conditions 
 - allows most direct impact of cloud observations on the analysis 
 - critical for high impact weather (e.g., TC and severe weather) 

Microphysics control variables: impact on DA 
(wind-storm Kyrill (2007) in Europel ) 

Physically unrealistic analysis adjustment without 
hydrometeor control variable (cloud ice in this example) 

Temperature analysis increment at 850 hPa 

No cloud ice adjustment 

> 25 K 

With cloud ice adjustment 
5-10 K 



Forecast error covariance: Algebra 

Only Pdd is well known: 

-  Correlations among microphysical variables not well known 

-  Even less known correlations between dynamical and microphysical variables 

Complex inter-variable correlations  
(e.g., standard dynamical variables and microphysical variables) 

Pdd =

PT ,T PT ,p PT ,v
PT ,p Pp,p Pp,v
PT ,v Pp,v Pv,v
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Correlations between dynamical variables 

Pcc =
Pice,ice Pice,snow Pice,rain
Pice,snow Psnow,snow Psnow,rain
Pice,rain Psnow,rain Prain,rain
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Correlations between microphysical variables 

Pf =
Pdd Pdc
Pdc
T Pcc
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Cross-correlations between dynamical and microphysical variables 

Pdc =
PT ,ice PT ,snow PT ,rain
Pp,ice Pp,snow Pp,rain
Pv,ice Pv,snow Pv,rain
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Significance of forecast error covariance 

Analysis correction of variational and ensemble DA can be represented as a linear 
combination of the forecast error covariance singular vectors ui 

Pf
1/2 = σ i

i
∑ uivi

T

Singular value decomposition (SVD) of forecast error covariance 

Structure of forecast error covariance defines analysis correction! 

x − x f = PfK
T KPf K

T + R"# $%
−1
(y−Kx f ) = Pf

1/2zKFKalman Filter and EnKF solution 
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T /2KT KPf K
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Similar is true for variational DA: x − x f = Pf
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i
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Fundamentally important to have adequate forecast error covariance.  



Forecast error covariance structure 
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Use single observation experiment to assess the structure: 

K = Iδij

Analysis increment proportional to a column of forecast error covariance 

x − x f = PfK
T KPf K

T + R"# $%
−1
[y−K (x f )]



Single observation of specific humidity 

-  Hurricane Gustav (2008) 

-  HWRF-MLEF data assimilation system  

Well-defined, localized analysis response 

X

The results are valid for hurricane Gustav (2008) at 1200 UTC on August 31, 
2008. The cross denotes the location of observation. 

HWRF-MLEF analysis response to single specific humidity (Q) observation at 850 hPa 

Q analysis at 850 hPa Vertical cross-section of Q analysis at 26.75 N 



Single observation of cloud snow at 650 hPa 

(a) Snow at 34N (Psnow,snow) (b) Rain at 34N (Prain,snow) 

Difficult to model rain-snow correlation:  
non-centered response and time-dependence 

X 



Assimilation of all-sky AMSU-A radiances with HWRF-MLEF  

(a) Enhanced Infrared (IR) Imagery at 1145 UTC 26 Aug 2010 (Unit: K); (b) AMSU-retrieved 
precipitation rate map from MetOp-A at 1311 UTC 26 Aug 2010 (Unit: mm h-1). Distribution 
of the 6-h total column condensate (Colored; Unit: Kg m-2) forecasts start from cycle 7 
analyses of (c) the CTL experiment, and (d) the ASR experiment, superposed with mean 
sea-level pressure and 10-m above ground wind barbs from, valid at 1200 UTC 26 Aug 
2010. (Figure 7 from Zhang et al. 2012) 

CTL – control experiment 

ASR – all-sky experiment 



Shannon Information measures for all-sky 
radiances (and other observations) 

Relative entropy 

H X{ }= − p(x)log(p(x))dx∫
Entropy Change of entropy due to observations 

ΔH = H X{ }−H X |Y{ }

How applicable are these measures to realistic data assimilation? 

Use information theory (e.g. entropy) as an objective, pdf-based 
quantification of information (Rodgers 2000; Zupanski et al. 2007): 
•  Change of entropy 

•  Relative entropy 

•  Mutual information 

Mutual information 

R X |Y,X{ }= − p(x | y)log p(x | y)
p(x)

dx∫ I X;Y{ }= − p(x, y)log p(x, y)
p(x)p(y)

dx∫



Information measures for Gaussian pdfs 

ΔH = ds = trace I −PaPf
−1#$ %&

•  Gaussian pdfs greatly reduce the complexity, since entropy is related 
to covariance 

•  Applicable to commonly used data assimilation algorithms 

Change of entropy / degrees of freedom for signal (DFS) 

Since eigenvalues of the matrix ZTZ are known and the matrix inversion is 
defined in ensemble space, the flow-dependent ds can be computed 

ds = trace (I + Z
TZ )−1ZTZ"# $%

ds =
λi
2

1+λi
2

i
∑

ZTZ =UΛUT

In realistic ensemble methods ds can be computed exactly in ensemble subspace  

Pa = Pf
1/2 I + ZTZ( )

−1
Pf
T /2 Z = R−1/2HPf

1/2



all-sky radiance observation information content 
(Degrees of Freedom for Signal – DFS) 

MW: AMSR-E all-sky radiance data assimilation (Erin, 2007) 
(from Zupanski et al. 2011, J. Hydrometeorology)  

OBS 89v GHz Tb Wind analysis uncertainty (500 
hPa) 

Degrees of Freedom for Signal 
(DFS) 

IR: Assimilation of synthetic GOES-R ABI (10.35 mm) all-sky radiances (Kyrill, 2007)  
(from Zupanski et al. 2011, Int. J. Remote Sensing) 

Cloud ice analysis uncertainy  Degrees of Freedom for 
Signal (DFS) METEOSAT Imagery valid at 

19:12 UTC 18 Jan 2007 

Analysis uncertainty and DFS are flow-dependent, largest DFS in cloudy areas of the storm.  



DFS for all-sky AMSU-A: hurricane Danielle (2010) 

Cycle 1 

Cycle 3 

Cycle 5 

Cycle 7 

ASR CSR SND 

ASR – all-sky 

CSR – clear-sky 

SND – all-sky, 
excluding 
AMSU-A 
channels 1-4 
and 15 

(From Zhang et 
al. 2012) 



GOES-R GLM proxy: WWLLN lightning observation assimilation 

-  DFS shows the utility of lightning observations in the analysis 

-  6-hour WRF-NMM forecast improved due to assimilating lightning observations  

Preliminary results: Assimilation of WWLLN lightning observations using WRF-NMM 

Forecast RMS error DFS 



Future  
 

Ø  Important to develop capability to extract maximum information from cloudy and 
precipitation-affected radiances 

 

Ø  Inner core all-sky satellite radiance observations are critical for improved 
analysis and prediction of hurricanes  

 

Ø  Cloudy radiance assimilation: computation aspects 
 - RT computation can increase 2-3 times with scattering 

 - number of observations can increase by an order of magnitude due to cloudy information  

 - 20-30 times more expensive to compute – need parallelization, code optimization 
 

Ø  Shannon entropy measures are useful tool for assessing the impact of all-sky 
radiance assimilation 

Ø  Combine information from various sources: GOES-R, JPSS (MW, IR, Lightning) 
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Iterative minimization 

Iterative minimization can be used in both ensemble and variational DA 

xk

f1 < f2 < f3

f (xopt ) f1 f2 f3

xk+1
α kdk

2-D 

control vector x

d descent direction 
α step length 

xk+1 = xk +α kdkIterative approach: 

Minimize cost-function f(x) 



Hessian Preconditioning: 
Geometric interpretation 

Physical space x0 

-gx 
xMIN 

J=const. 
a 

b 

Preconditioning space 

ζ0 

-gz 
ζMIN 

J=const. 

a’ 

b’ 

  
κ(Q) =

b
a
≈ 4

  
κ(Q

ζ
) =

b '
a '
= 1

In realistic applications κ(Q)~O(105-108). Hessian 
preconditioning is critical for efficient minimization. 



Assimilation of all-sky AMSU-A radiances with HWRF-MLEF: 
Impact on hurricane intensity forecast  

Hurricane Danielle (2010): Time series of the minimum sea level 
pressure (hPa) and NHC best track data (thick grey line), and MLEF-
HWRF experiment outputs (colored lines) between 1800 UTC 24 Aug 
and 1800 UTC 26 Aug 2010 in 6 hour DA intervals.  


