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Data Assimilation

• Combine “optimally” short-term forecasts with
observations.
• 3D-Var and Optimal Interpolation: used for many years,
fixed background error covariance B
• Advanced methods: they evolve B (“errors of the day”):

 4D-Var: widely used in operations.
Full rank B :-); requires model adjoint.  :-(

 Ensemble Kalman Filter, low rank B :-( ;  no adjoint :-)
 Hybrids: B from EnKF, variational solution
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Conclusions from the THORPEXConclusions from the THORPEX
Workshop in Buenos Aires (2008)Workshop in Buenos Aires (2008)

  4D-Var and EnKF are competitive in skill4D-Var and EnKF are competitive in skill
  Hybrid approach best (Buehner et al, 2008, 2009)Hybrid approach best (Buehner et al, 2008, 2009)
 There are no fatal disadvantages for either system There are no fatal disadvantages for either system
  Computationally competitiveComputationally competitive
  About 40-100 ensemble membersAbout 40-100 ensemble members  needed from storm toneeded from storm to
global scales for EnKFglobal scales for EnKF
 Both methods have developed approaches to deal with Both methods have developed approaches to deal with
model errors and nonlinearitiesmodel errors and nonlinearities

As a result, UKMO, NCEP, ECMWF, Italy, Japan, Canada,
Germany, Brazil, Argentina… are now exploring EnKF (or
hybrid EnKF+variational) for operations. NCEP implemented a
hybrid on May 22, 2012!
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This talk: tools that improve EnKFThis talk: tools that improve EnKF
We adapted ideas inspired by 4D-VarWe adapted ideas inspired by 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
 “Running in Place” and “Quasi Outer Loop”, deal with spin-up,
nonlinearities and long windows (K. & Yang, QJ 2010, Yang et al. MWR 2012)
  Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008). Ota et al.
  Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
 Low-dimensional model bias correction (Li et al., MWR, 2009)
 Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).

Examples of applications:
Global Ocean Data Assimilation (Penny, PhD thesis, 2011)
Estimates of surface carbon fluxes as parameters (Kang et al, 2011)

Comparison of EnKF/4DVar/ECCO in a simple coupled ocean-
atm model (Singleton, 2011).
 Initial and final increments in 4D-Var and EnKF
 Assimilation of precipitation (Lien et al., 2012)



5

Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(a square root filter)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel
• No adjoint needed
• 4D LETKF extension
• Computes weights
explicitly

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations



7

Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.

   
xn,k

b = Mn xn!1,k
a( )

Xb = x1
b ! xb | ... | xK
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer Loop
 “Running in place” (faster spin-up)
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations
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No-cost LETKF smoother
tested on a QG model: it works…

“Smoother” reanalysis

LETKF Analysis
xn
a = xn

f + Xn
fwn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  !xn!1

a = xn!1
f + Xn!1

f wn
a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the t have the outer loopouter loop  so important in 3D-Var andso important in 3D-Var and
4D-Var (DaSilva, pers. 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model
(Kalnay et al. 2007a Tellus),
RMS analysis error:

4D-Var  LETKF
Window=8 steps 0.31    0.30 (linear window)
Window=25 steps 0.53    0.66 (nonlinear window)

With long windows + Pires et al. => 4D-Var clearly wins!
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

Quasi Outer Loop (QOL): correct the analysis mean at tn-1

Running in Place (RIP): correct all the analyses at tn-1

…and then do the data assimilation to tn again
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Nonlinearities: Nonlinearities: ““Quasi Outer LoopQuasi Outer Loop”” (QOL) (QOL)

Quasi Outer Loop: use the final weights to correct only the
mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the
ensemble on a more accurate nonlinear solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
         +QOL             +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39
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Nonlinearities,Nonlinearities,  ““QOLQOL”” and  and ““Running in PlaceRunning in Place””

Quasi Outer Loop: similar to 4D-Var: use the final weights
to correct only the mean initial analysis, keeping the
initial perturbations. Repeat the analysis once or twice.
It centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
          +QOL             +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39

“Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times…
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Running in Place: Results with a QG modelRunning in Place: Results with a QG model

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It
becomes as fast as 4D-Var (blue). RIP takes only 2-6 iterations.

 

RIP accelerates
EnKF spin-up
(e.g., hurricanes,
severe storms)
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LETKF-RIP with real observations
(Typhoon Sinlaku, 2008)

11/23/2011@NTU-‐TIMS

SYNOP(+),SOUND(△),
DROPSONDE(○),
Typhoon	  center	  (X) RIP	  be;er	  use	  the	  “limited	  observaIons”!

Flight	  data

Typhoon	  Sinlaku	  (2008)

3-‐day	  forecast

Obs
LETKF-‐RIP
LETKF

Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan)
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Improvement for cross-track
error
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Steve Penny’s thesis
defense

April 15, 2011

An application of LETKF-RIP to ocean data assimilation

Data Assimilation of the Global Ocean 
using 4D-LETKF and MOM2

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin

Penny (now at UMD/NCEP) implemented the LETKF
with either IAU or RIP and compared it with SODA (OI)
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Forecast sensitivity to observations
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al.

2010, Kalnay et al., 2012)

The only difference between         and            is the assimilation of observations at 00hr:

 Observation impact on the reduction of forecast error:

(Adapted from Langland
and Baker, 2004)

et |0 = xt |0
f ! xt

a

et |0 et |!6

!e2 = (et |0
T et |0 " et |"6

T et |"6 ) = (et |0
T " et |"6

T )(et |0 + et |"6 )

analysis   t

et |!6
et |0

-6hr 00hr

OBS.

(x0
a ! x0|!6

b ) = K(y ! H (x0|!6
b ))
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Forecast sensitivity to observations

!e2 = (et |0
T et |0 " et |"6

T et |"6 ) = (et |0
T " et |"6

T )(et |0 + et |"6 )
= (xt |0

f " xt |"6
f )T (et |0 + et |"6 )
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a " x0|"6

b )#$ %&
T

(et |0 + et |"6 ), so that

!e2 = MK(y " H (x0|"6
b ))#$ %&

T
(et |0 + et |"6 )

Langland and Baker (2004), Gelaro, solve this with the adjoint:

!e2 = (y " H (x0|"6
b ))#$ %&

T
KTMT (et |0 + et |"6 )

This requires the adjoint of the model       and of the data
assimilation system      (Langland and Baker, 2004)KT

MT
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Forecast sensitivity to observations

!e2 = (y " H (x0|"6
b )#$ %&

T
KTMT (et |0 + et |"6 )

With EnKF we can use the original equation without “adjointing”:

!e2 = (y " H (x0|"6
b )#$ %&

T
R"1Y0

aXt |0
fT (et |0 + et |"6 ) / (K "1)

K = PaHTR!1 = 1 / (K !1)XaXaTHTR!1 so that
MK =MXa (XaTHT )R!1 / (K !1) = Xt |0

f YaTR!1 / (K !1)

This product uses the available nonlinear forecast ensemble
and                    . We can also verify in a targeted area where
P=1, elsewhere P=0:

Recall that

Xt |0
fT

Y0
a = (HXa )

!eP
2 = (y " H (x0|"6

b )#$ %&
T
R"1Y0

aXt |0
fTPTP(et |0 + et |"6 ) / (K "1)

Langland and 
Baker (2004):

Liu & Kalnay,
Li et al, 2010
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Test ability to detect a poor quality ob impact on the
forecast in the Lorenz 40 variable model

The adjoint and the ensemble sensitivity give identical observation impact on the
24 hr forecast.

The ensemble sensitivity is nonlinear and is able to detect bad obs for longer
forecasts.

 But we have to deal with localization for longer forecasts.

Observation impact from LB(+) and from ensemble sensitivity (   )

1 day 10 days(Liu, pers. comm.)
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Impact of dropsondes on a Typhoon
Estimated observation impactEstimated observation impact

TY Sinlaku

Degrading

Improving

Kunii et al., 2011
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Denying negative impact data improves forecast!
Estimated observation impactEstimated observation impact Typhoon track forecast is

actually improved!!

Improved
forecast

36-h forecasts

TY Sinlaku

Original
forecast

Observed
track
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Impact summary: Ota et al., 2012

5/22/2012 5th WMO Workshop on the Impact of Various
Observing Systems on NWP (Sedona, AZ, USA)

27

Total impacts Impacts per 1 obs

All observation types have positive impacts on average.
For the total impact, 1: aircraft, 2: AMSU-A, 3: radiosonde, 4: IASI, 5: GPSRO
For impact per 1 obs., 1: radiosonde, 2: GPSRO, 3: aircraft, 4: Scattrometer wind, 5: marine
surface observation

Forecast error
reduction
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Radiosonde impacts: Ota et al. 2012

5/22/2012 5th WMO Workshop on the Impact of Various
Observing Systems on NWP (Sedona, AZ, USA)

28

Total impacts of
radiosonde (12UTC
October 21 to
06UTC October 28)

Most observations
have positive
impacts on
average

Relatively large
impacts for East
Asia, Western US,
Canada, and South
America.
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Aircraft impacts (Ota et al. 2012)

5/22/2012 5th WMO Workshop on the Impact of Various
Observing Systems on NWP (Sedona, AZ, USA)

29

Total impacts, moist total energy Impacts per 1 obs (250-125 hPa)

Aircraft observations over US, Europe and East Asia have large positive impacts.
The impact of aircraft observations is extremely large over US, however impact per 1
observations is small.
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Objectives
• Explore the feasibility of estimating surface CO2

fluxes at the model-grid scale by assimilating
atmospheric variables (U, V, T, q, Ps) and
atmospheric CO2 simultaneously
– Consider transport errors in analyzing CO2 variables
– No a-priori information for CO2

“Carbon Data Assimilation with a Coupled Ensemble Kalman Filter”
Supported by Climate Change Prediction Program in Department of Energy

Realistic System (CAM/CLM)
Assimilating real observation of GOSAT & AIRS

UC BerkeleyUC Berkeley
Prof. Inez Fung, Dr. Junjie Liu

Simulation mode (SPEEDY)
Develop new methodologies
University of MarylandUniversity of Maryland

Prof. Eugenia Kalnay, Dr. Ji-Sun Kang
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“Localization” of variables
• Analysis of surface CO2 fluxes

assimilating atmospheric CO2
observations
– Fossil fuel forcing

Ps
q
T
V
U
C

CF
PsqTVUCCF

Ps
q
T
V
U
C

CF
PsqTVUCCF

True fluxes

CF estimation w/ varloc

CF estimation w/o varloc

B matrix
Fully multivariate analysis 

1-way multivariate analysis    
with variable localization 

Kang et al. (2011, JGR)
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Observation impact
A: True fluxes C: SFC+GOSATB: SFC+GOSAT+AIRS D: SFC
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Application to heat/moisture flux
estimation

• Can we estimate surface heat/moisture fluxes
by assimilating atmospheric temperature/moisture
observations? We can use the same
methodology!

• OSSEs
– Nature run: SPEEDY
– Forecast model: SPEEDY with persistence forecast

of sensible/latent heat fluxes (SHF/LHF)
– Observations: raob observations of (U, V, T, q, Ps) and

AIRS retrievals of (T, q)
– Initial conditions: random (no a-priori information)
– Fully multivariate data assimilation
– Analysis: U, V, T, q, Ps + SHF & LHF every six hours
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Result: Analysis of SHF



35

Result: Analysis of LHF
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Time series of
LHF/SHF

Recall that LHF & SHF
are updated only by the
data assimilation here!

Promising results from the
estimation of “evolving
parameters” with data
assimilation
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Tamara Singleton’s thesis:

Data Assimilation ExperimentsData Assimilation Experiments  with awith a
SimpleSimple  Coupled Ocean-Atmosphere ModelCoupled Ocean-Atmosphere Model

Questions explored:
-- Which one is more accurate: 4D-Var or EnKF?
-- Is it better to do an ocean reanalysis separately, or as a
single coupled system?
ECCO is a version of 4D-Var where both the initial state
and the surface fluxes are control variables. This allows
ECCO to have very long windows (decades) and estimate
the surface fluxes that give the best analysis.
--Is ECCO the best approach?
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Simple Coupled Ocean-Atmosphere System

Ocean

Tropical atmosphere

Extratropical atmosphere

Model Parameter Definitions

3 coupled Lorenz models: A slow “ocean”
component strongly coupled with a fast
“tropical atmosphere component”, in turn
weakly coupled with a fast “extratropical
atmosphere” (Peña and Kalnay, 2004).

Model State:
k1=10
k2 = -11

Uncentering
parameters

k1,k2

σ=10,
b=8/3, and
r=28

Lorenz
parameters

σ, b, and r
τ = 0.1time scaleτ

c,cz = 1
ce = 0.08

Coupling
coefficient

c,cz,ce

ValuesDescriptionVariables

 

!xe = ! (ye " xe ) " ce(xt + k1)
!ye = rxe " ye " xeze " ce(yt + k1)
!ze = xeye " bze

 

!xt = ! (yt " xt ) " c(X + k2 ) " ce(xe + k1)
!yt = rxt " yt " xtzt + c(Y + k2 ) + ce(ye + k1)
!zt = xt yt " bze + czZ

 

!X = !" (Y # X) # c(xt + k2 )
!Y = !rX # !Y # !XZ + c(yt + k2 )
!Z = !XY # !bZ + czzt

[xe, ye, ze, xt , yt , zt ,X,Y ,Z]
T
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Simple Coupled Ocean-Atmosphere Model (Peña and Kalnay, 2004)

Coupling strengthTropical Atmosphere

Tropical OceanExtra-tropical Atmosphere
Ocean is vacillating
between a “normal”

(lasts about 3-12 years)
and “El Nino” state

(lasts about a 1 year)
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Simple Coupled Ocean-Atmosphere Model (Peña and Kalnay, 2004)

Coupling strengthTropical Atmosphere

Tropical OceanExtra-tropical Atmosphere
Ocean is vacillating
between a “normal”

(lasts about 3-12 years)
and “El Nino” state

(lasts about a 1 year)

We compare 4D-Var and EnKF with this simple coupled model
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Time series of the x-component

Simple Coupled Ocean-Atmosphere Model (Peña and Kalnay, 2004)

fast tropical
atmosphere

slow
ocean

fast
extratropical
atmosphere

Δt=0.01

We compare 4D-Var and EnKF with this simple coupled model
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Data Assimilation Experiment Design

• Simple Coupled Ocean-Atmosphere Model (perfect model)
– Used to create the “true” trajectory

• Observations
– Generated from the nature run plus “random errors” with 1.41 s.d.
– Every 8 time steps of a simulation

• Perform coupled and uncoupled ocean data assimilations
with several EnKF, 4D-Var, and ECCO-4D-Var

• Compute RMS errors of the difference between the analysis
and the true solution.

• Lengthen assimilation windows, from 8 to 320 steps

• Perform fully coupled data assimilation (ETKF, 4D-Var),
and just ocean assimilation (LETKF, 4D-Var and ECCO)
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EnKF-Based Methods

Atmos: Available at
analysis time
Ocean: Available
throughout an
assimilation window

Available at analysis
time

Available at analysis
time

Available throughout
an assimilation
window

Available at the end
of a window (analysis
time)

Observations

4-dimensional

Subsystem
localization

Fast and slow
variables separately

4D-LETKF
(Separate Ocean)

Subsystem
localization

Fast and slow
variables separately

LETKF
(Separate Ocean)

Uses quasi-outer
loop to improve the
initial analysis mean

Fast and slow
variables
simultaneously

ETKF-QOL
(Fully coupled)

4-dimensionalFast and slow
variables
simultaneously

4D-ETKF
(Fully coupled)

Fast and slow
variables
simultaneously

ETKF
(Fully coupled)

Special FeaturesAssimilatingMethod

Description of EnKF-based methods
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Variational Data Assimilation
Experiments:

Fully Coupled 4D-Var
Ocean only 4D-Var

ECCO-like Ocean 4D-Var
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Fully coupled 4D-Var : the Cost Function
• In 4D-Var, a cost function is minimized to produce an optimal analysis.

– The cost function measures the distance between the model with
respect to the observations and with respect to the background state.

• The analysis is obtained by minimizing the cost function given by

  
J(x t0

) =
1
2

x t0
! x t0

b"# $%
T
B0

!1 x t0
! x t0

b"# $% +
1
2

H(x ti
)! y ti

o"# $%
T
R ti

!1

i=1

N

& H(x ti
)! y ti

o"# $%

Jo- “observation” cost functionJb - ”background” cost function

where the control variables are

   x0 = xe
0,ye

0,ze
0,xt

0,yt
0,zt

0,X0,Y0,Z0( )T

Initial model state for ocean
Initial model state for tropical atmos.Initial  model state for extratropical atmos
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4D-Var: Quasi-static Variational Data
Assimilation (QVA)

• For longer windows, multiple
minima are a problem for 4D-
Var minimization (Pires et al.,
1996).

• Also for longer assimilation
windows, non-Gaussian
perturbations of the
observation error and
background error  -> in non-
quadratic cost functions

• Pires et al. (1996) proposed
the Quasi-static Variational
Data Assimilation (QVA)
approach.

x

t
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4D-Var competes
with EnKF-based

methods for
longer windows
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Fully coupled 4D-Var vs EnKF summary

• We developed fully coupled 4D-Var and EnKF systems for the
simple coupled ocean-atmosphere model

• 4D-Var needs tuning the amplitude of the background error
covariance B. EnKF needs tuning of inflation (or adaptive
inflation).

• Lengthening the assimilation windows and applying QVA
improves the 4D-Var analysis because 4D-Var “forgets” B.
But longer windows are more expensive…

• Fully coupled EnKF are optimal for short windows. Short
windows are less expensive…

• The optimal configurations (short windows for EnKF
and long windows for 4D-Var) have similar accuracy.
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ECCO-like 4D-Var

• The Consortium for Estimating the Circulation and Climate
of the Ocean (ECCO) is a collaboration of a group of
scientists from the MIT, JPL, and the Scripps Institute of
Oceanography

• The main characteristic of ECCO is that they include
surface fluxes as control variables.
– This allows them to have exceedingly long assimilation windows in

4D-Var (e.g. 10 years or even 50 years).
– They used NCEP Reanalysis fluxes (Kalnay et al, 1996) as a first

guess.

• ECCO used 4D-Var to estimate the initial ocean state and
surface fluxes (Stammer et al., 2004; Kohl et al., 2007) in
a 50-year reanalysis
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Carton and Santorelli (2008) plot of the First Empirical Orthogonal Eigenfunction of monthly heat content anomaly
in the latitude band 20N-60N Explained variance is shown on the title line. Lower panel shows the corresponding
component time series annually averaged along with the Pacific Decadal Oscillation Index of Mantua et al. (1997)
in black.

ECCO is the only one of the analyses for which
neither the first nor second heating EOF resemble
the Pacific Decadal Oscillation Pattern

ECCO

ECCO

Motivation: Comparison of Ocean Analyses



52

ECCO-like 4D-Var: Cost Function includes
all surface fluxes as control variables
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ECCO-like 4D-Var: Experimental Design

• Observations
– Same as EnKF and 4D-Var experiments

• Forecast Model
– Slow subsystem of coupled model with fluxes changing after every 8

time steps

• Data Assimilation: ECCO Ocean 4D-Var
– Control variables are initial ocean state and flux terms
– Prescribed background error covariance from NMC method
– Varied length of assimilation windows: 8 – 320 time steps

• Comparison with: Ocean 4D-Var
– Control variables are initial ocean state
– Prescribed background error covariance from NMC method
– Varied length of assimilation windows: 8 – 320 time steps
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Comparison of ECCO-like & Ocean 4D-Var
Obs. s.d. error = 1.41 for oceanQVA APPLIED

ECCO improves the 4D-analyses
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assimilation window (time-steps)

RMSE : Ocean State

ECCO (ocean only) remains satisfactory

OCEAN ONLY

4D-Var (ocean only) fails

By using sfc fluxes as control variables, ECCO can use very long windows
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Legend

Black – Truth

Blue – Ocn 4D-Var

Red – ECCO Ocn 4D-Var

ECCO and 4D-Var are
challenged during regime

changes. ECCO provides a
better estimate during

regime changes.

This is because in ECCO the fluxes “adapt” in order to improve the analysis!



 Are the ECCO fluxes more accurate?

RMS Errors (Flux 3 Estimate)
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ECCO does not improve the flux estimates over the first guess
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Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with longer
windows) have about the same accuracy.
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Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with longer
windows) have about the same accuracy.
-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?
Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are fairly good.
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Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with longer
windows) have about the same accuracy.
-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?
Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are quite good.
-- Is ECCO 4D-Var with both the initial state and the surface
fluxes as control variables the best approach?
In our simple ocean model 4D-Var cannot remain accurate with
very long windows. Our ECCO reanalysis remained satisfactory
with very long windows but at the expense of less accurate
fluxes.
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SummarySummary
• EnKF and 4D-Var are competitive, hybrid seems best
• EnKF being tested in many countries and labs.
• Ideas to further improve LETKF work well:

– No-cost smoothing and “running in place” (K. and Yang, 2010, Penny)
– Forecast sensitivity without adjoint model (Li and Kalnay, 2008)
– Coarse resolution analysis without degradation (not shown) Yang et al
– Model bias can be estimated and corrected (not shown) Danforth&K.
– Adaptive inflation (helps a lot) can be combined with estimation of obs.

errors (Miyoshi, 2011, Li et al. 2009).
– Estimation of surface fluxes of carbon as evolving parameters seems

to work well if several improvements are implemented (Kang et al)

• Coupled ocean-atmosphere analyses (Singleton, 2011)
– 4D-Var and EnKF work well in a simple fully coupled ocean-atm.

model. EnKF optimal for short windows, 4D-Var for long windows.
– Optimal accuracy similar for both methods.
– ECCO (4D-Var with fluxes as control variables, very long window)

gives good analyses but not so good surface fluxes
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New: Effective Assimilation of Precipitation
(Guo-Yuan Lien, E. Kalnay and T Miyoshi)!

• Assimilation of precipitation has been done by changing the model
moisture q in order to make it rain as observed.

• Very successful during the assimilation: e.g. the North American Regional
Reanalysis.

• However the model forgets about the changes almost immediately after
the assimilation stops!

• We believe it is because what assimilation of precipitation should do is
modify efficiently potential vorticity (PV), the variable that the model will
remember.

• EnKF, in principle, should modify PV efficiently, since the analysis weights
will be larger for an ensemble member that is raining more correctly,
because it has a better PV.

• However, about 5 years ago, we tried assimilating precipitation
observations in a SPEEDY model simulation and the results were very
disappointing.

• Another problem is that EnKF assumes model and obs perturbations are
Gaussian. And precipitation is NOT Gaussian!
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Figure	  1:Figure 1: Examples of a 10-year climatology of precipitation and its
Gaussian transform.
PV, however, to obtain a good EnKF assimilation of rain in our OSSEs. In addition we
transform the observed and model precipitation variables into Gaussian distributions
based on their climatology. This second problem is addressed by computing first the
cumulative distribution function (CDF)  F(y) of a 10-years climatology of precipitation
y for each grid point or observation station (Lien et al., 2012):
, where  is the inverse CDF of the normal distribution. Figure 1 shows an example of
the original precipitation and its Gaussian transform for summer and winter at a point
in Maryland.

ytrans = G
!1[F(y)]

G!1(x) = 2erf !1(2x !1)
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Figure	  2

Figure 2: Example of the pdf value assigned to
rain. If the probability of no rain is 70%, a no
rain observation is assigned a CDF value of
0.35.
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Figure	  4
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Figure	  5
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Figure	  6
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Figure	  7
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Figure	  8
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Add-on: no-cost LETKF smoother allows a comparison of EnKF
initial and final increments: the initial 4D-Var increments are

sensitive to the norm, the final increments are similar to EnKF

“Smoother” reanalysis

LETKF Analysis
xn
a = xn

f + Xn
fwn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  !xn!1

a = xn!1
f + Xn!1

f wn
a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Initial and final analysis corrections
(colors), with one Bred Vector (contours)

LETKF

4D-Var

Initial increments

Initial increments

Final increments

Final increments

LETKF

4D-Var
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