
Variational Data Assimilation
Weak Constraint 4D-Var

Yannick Trémolet
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4D Variational Data Assimilation

4D-Var comprises the minimisation of:

J(x) =
1

2
[H(x)− y]TR−1[H(x)− y]

+
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
F(x)TC−1F(x)

x is the 4D state of the atmosphere over the assimilation window.

H is a 4D observation operator, accounting for the time dimension.

F represents the remaining theoretical knowledge after background
information has been accounted for (balance, DFI...).

Control variable reduces to x0 using the hypothesis: xi =Mi (xi−1).

The solution is a trajectory of the model M even though it is not
perfect...
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Weak Constraint 4D-Var

Typical assumptions in data assimilation are to ignore:
I Observation bias,
I Observation error correlation,
I Model error (bias and random).

The perfect model assumption limits the length of the analysis
window that can be used to roughly 12 hours.

Model bias can affect assimilation of some observations (radiance
data in the stratosphere).

In weak constraint 4D-Var, we define the model error as

ηi = xi −Mi (xi−1) for i = 1, . . . , n

and we allow ηi to be non-zero.
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Yannick Trémolet (ECMWF) Variational Data Assimilation July 2009 5 / 43



Weak Constraint 4D-Var

We can derive the weak constraint cost function using Bayes’ rule:

p(x0 · · · xn|xb; y0 · · · yn) =
p(xb; y0 · · · yn|x0 · · · xn)p(x0 · · · xn)

p(xb; y0 · · · yn)

The denominator is independent of x0 · · · xn.

The term p(xb; y0 · · · yn|x0 · · · xn) simplifies to:

p(xb|x0)
n∏

i=0

p(yi |xi )

Hence

p(x0 · · · xn|xb; y0 · · · yn) ∝ p(xb|x0)

[
n∏

i=0

p(yi |xi )

]
p(x0 · · · xn)
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Weak Constraint 4D-Var

p(x0 · · · xn|xb; y0 · · · yn) ∝ p(xb|x0)

[
n∏

i=0

p(yi |xi )

]
p(x0 · · · xn)

Taking minus the logarithm gives the cost function:

J(x0 · · · xn) = − log p(xb|x0)−
n∑

i=0

log p(yi |xi )− log p(x0 · · · xn)

The terms involving xb and yi are the background and observation
terms of the strong constraint cost function.

The final term is new. It represents the a priori probability of the
sequence of states x0 · · · xn.
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Weak Constraint 4D-Var

Given the sequence of states x0 · · · xn, we can calculate the
corresponding model errors:

ηi = xi −Mi (xi−1) for i = 1, . . . , n

We can use our knowledge of the statistics of model error to define

p(x0 · · · xn) ≡ p(x0; η1 · · · ηn)

One possibility is to assume that model error is uncorrelated in time.
In this case:

p(x0 · · · xn) ≡ p(x0)p(η1) · · · p(ηn)

If we take p(x0) = const. (all states equally likely), and p(ηi ) as
Gaussian with covariance matrix Qi , weak constraint 4D-Var adds the
following term to the cost function:

1

2

n∑
i=1

ηT
i Q−1

i ηi

Yannick Trémolet (ECMWF) Variational Data Assimilation July 2009 8 / 43



Weak Constraint 4D-Var

For Gaussian, temporally-uncorrelated model error, the weak
constraint 4D-Var cost function is:

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb)

+
1

2

n∑
i=0

[Hi (xi )− yi ]
TR−1

i [Hi (xi )− yi ]

+
1

2

n∑
i=1

[xi −Mi (xi−1)]TQ−1
i [xi −Mi (xi−1)]

Do not reduce the control variable using the model and retain the 4D
nature of the control variable.

Account for the fact that the model contains some information but is
not exact by adding a model error term to the cost function.

Model M is not verified exactly: it is a weak constraint.

If model error is correlated in time, the model error term contains
additional cross-correlation blocks.
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4D-Var with Model Error Forcing

J(x0, η) =
1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

+
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
ηTQ−1η

with xi =Mi (xi−1) + ηi .

ηi has the dimension of a 3D state,

ηi represents the instantaneous model error,

η is constrained by the fact that it is propagated by the model.

All results shown later are for constant forcing over the length of the
assimilation window, i.e. for correlated model error.
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4D-Var with Model Error Forcing

���������

�	��
�

�����

TL and AD models can be used with little modification,

Information is propagated between obervations and IC control variable
by TL and AD models.
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4D-Var with Model Bias

J(x0, β) =
1

2

n∑
i=0

[H(xm
i + βi )− yi ]

TR−1
i [H(xm

i + βi )− yi ]

+
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
βTQ−1

β β

with xm
i =Mi ,0(x0) and xi =Mi ,0(x0) + βi .

�
�������	��
�����������

� �������

βi is 3D state-like,

The model is not perturbed,

β sees global (model − all observations) bias,

Does not correct for bias of one subset of observations against
another subset of observations.
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4D-Var with Model Bias

�������

�	��


Bias added to forecast at post-processing stage,

Makes sense if β is slowly varying or constant (βi = β),

Information is propagated between obervations and IC control variable
by TL and AD models (not modified),

Model bias is represented by additional parameters, without entering
the model equations,

Optimisation problem is very similar to strong constraint 4D-Var.
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4D State Control Variable

Use x = {xi}i=0,...,n as the control variable.

Nonlinear cost function:

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb)

+
1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

+
1

2

n∑
i=1

[M(xi−1)− xi ]
TQ−1

i [M(xi−1)− xi ]

In principle, the model is not needed to compute the Jo term.

In practice, the control variable will be defined at regular intervals in
the assimilation window and the model used to fill the gaps.
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4D State Control Variable

time

δx1

xb

Jb
δx0

δx2

Jq

Jq

δx3

Jq

Model integrations within each time-step (or sub-window) are
independent:

I Information is not propagated across sub-windows by TL/AD models,
I Natural parallel implementation.

Tangent linear and adjoint models:
I Can be used without modification,
I Propagate information between observations and control variable

within each sub-window.
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Control Variable in Weak Constraint 4D-Var

4D-Var 4D-Varx 4D-Varη 4D-Varβ

x0 x x0, η x0, β

xi =Mi (xi−1) xi ≈Mi (xi−1) xi =Mi (xi−1) + ηi xi =Mi ,0(x0) + βi

⇓ ⇓ ⇓ ⇓

3D Initial
Condition

4D State
3D I.C. + Model

Error Forcing
3D I.C. +

Model Bias
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Model error covariance matrix

The usual choice is Q = αB.

Linearisation in incremental formulation gives:

δxn = Mn . . .M1δx0 +
n∑

i=1

Mn . . .Mi+1ηi

δx0 can be identified with η0.

The solution of the analysis equation satisfies:

δx0 = BHT (R + HBHT )−1(y −H(xb))

η = QHT (R + HQHT )−1(y −H(xb))

If Q and B are proportional, δx0 and η are constrained in the same
directions, may be with different relative amplitudes.

They both predominantly retrieve the same information: Q = αB is
too limiting.
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Generating a Model Error Covariance Matrix

B is estimated from an ensemble of 4D-Var assimilations.

Considering the forecasts run from the 4D-Var members:
I At a given step, each model state is supposed to represent the same

true atmospheric state,
I The tendencies from each of these model states should represent

possible evolutions of the atmosphere from that same true atmospheric
state,

I The differences between these tendencies can be interpreted as possible
uncertainties in the model or realisations of model error.

Q can be estimated by applying the statistical model used for B to
tendencies instead of analysis increments.

Q has narrower correlations and smaller amplitudes than B.
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Average Temperature Vertical Correlations

Background Error Model Error
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Temperature Horizontal Correlations

Background Error Model Error
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Results: Fit to observations

AMprofiler-windspeed Std Dev N.Amer

Background Departure Analysis Departure
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Model Error Control

Fit to observations is more uniform over the assimilation window.

Background fit improved only at the start: error varies in time ?
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Model Error Forcing

Zonal Mean Temperature
July 2004

M.E. Forcing −→

M.E. Mean Increment
↘

Control Mean Increment
↓
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Mean Model Error Forcing

Temperature
Model level 11 (≈5hPa)
July 2004

Mean M.E. Forcing −→

M.E. Mean Increment
↘

Control Mean Increment
↓
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AMSU-A First Guess Departures
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Low Level Mean Model Error Forcing

Min = -0.10, Max = 0.05, RMS Global=0.00, N.hem=0.01, S.hem=0.00, Tropics=0.00
Temperature, Model Level 60
Friday 30 April 2004 21UTC ©ECMWF Mean Model Error (ej6a)

-0.12

-0.105

-0.09

-0.075

-0.06

-0.045

-0.03

-0.015

-0.005
0.005

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

Min = -0.07, Max = 0.06, RMS Global=0.00, N.hem=0.01, S.hem=0.00, Tropics=0.00
Temperature, Model Level 60
Friday 30 April 2004 21UTC ©ECMWF Mean Model Error (ej8k)

-0.12

-0.105

-0.09

-0.075

-0.06

-0.045

-0.03

-0.015

-0.005
0.005

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

The only significant source of observations in the box is aircraft data
(Denver airport).

Removing aircraft data in the box eliminates the spurious forcing.

Yannick Trémolet (ECMWF) Variational Data Assimilation July 2009 31 / 43



Is it model error?

Aircraft Temperature Bias
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Observations are biased.

Figure from Lars Isaksen
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Is it model error?

Strong Constraint Weak Constraint

1333 zonal mean analysis increment                              
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The mean temperature increment is smaller and smoother with weak
constraint 4D-Var (Stratosphere only, June 1993).
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Is it model error?
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The work on model error has helped identify other sources of error in the
system.
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Weak Constraint 4D-Var Configurations

6-hour sub-windows:
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I Better than 6-hour 4D-Var: two cycles are coupled through Jq,
I Better than 12-hour 4D-Var: more information (imperfect model),

more control,
I Q = αB could be used in that case.

Single time-step sub-windows:
I Each assimilation problem is instantaneous = 3D-Var,
I Equivalent to a string of 3D-Var problems coupled together and solved

as a single minimisation problem,
I Approximation can be extended to non instantaneous sub-windows.
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Weak Constraint 4D-Var: Sliding Window
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(1) Weak constraint 4D-Var

(2) Extended window
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(3) Initial term has converged (4) Assimilation window is moved forward

This implementation is an approximation of weak contraint 4D-Var
with an assimilation window that extends indefinitely in the past...

...which is equivalent to a Kalman smoother that has been running
indefinitely.
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4D State Control Variable: Minimization

The Hessian of the cost function is the sum of
I the Hessian of the observation term G = diag(· · · ,HT

i R−1
i Hi , · · · )

I the tri-diagonal Hessian of Jb + Jq is:


B−1 + MT

1 Q−1
1 M1 −MT

1 Q−1
1 0

−Q−1
1 M1 Q−1

1 + MT
2 Q−1

2 M2

−Q−1
2 M2

. . . −MT
n−1Q

−1
n−1

Q−1
n−1 + MT

n Q−1
n Mn −MT

n Q−1
n

0 −Q−1
n Mn Q−1

n


The off-diagonal terms propagate the information between the
sub-windows.

Accounting for correlated model error, the matrix becomes full.
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4D State Control Variable: Properties

Preconditioning with B−1/2,Q
−1/2
1 , · · · ,Q−1/2

n

Over one time step, Mi ≈ I :

Ĵ” ≈


2I −I 0
−I 2I −I

−I
. . .

. . .
. . . 2I −I

0 −I I

+ ˆJo”

The largest eigenvalue is:

λmax ≈ 4 + 2nobs/n max
[
(σb/σo)2, (σq/σo)2

]
Approximately the same as the maximum eigenvalue of strong
constraint 4D-Var for the sub-windows.

But the smallest eigenvalue is λmin ∝ 1/n2.
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4D State Control Variable: Properties

Condition number:
κ ≈ 2 n nobs (σq/σo)2

I Larger than for strong constraint 4D-Var,
I Increases with the number of sub-windows (it takes n iterations to

propagate information).

Simplified Hessian of the cost function is close to a Laplacian
operator: small eigenvalues are obtained for constant perturbations
which might be well observed and project onto eigenvectors of Jo”
associated with large eigenvalues.

Using the square root of this tri-diagonal matrix to precondition the
minimisation is equivalent to using the initial state and forcing
formulation.

Can we combine the benefits of treating sub-windows in parallel with
efficient minimization?

Yannick Trémolet (ECMWF) Variational Data Assimilation July 2009 39 / 43



Outline

1 Introduction

2 The Maximum Likelihood Formulation

3 4D Variational Data Assimilation
Model Error Forcing Control Variable
Model Bias Control Variable
4D State Control Variable

4 Model Error Covariance Matrix

5 Results
Constant Model Error Forcing
Is it model error?

6 Towards a long assimilation window

7 Summary
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Weak Constraints 4D-Var: Summary

In strong constraint 4D-Var, we can use the constraints to reduce the
minimization problem to an initial value problem.

Weak constraint 4D-Var with a model error forcing term is very
similar to an initial value problem with parameter estimation
(parameters happen to represent model error).

Weak constraint 4D-Var has already taught us about observation bias
and errors in the balance operators,

Weak constraint 4D-Var with constant model error forcing in the
stratosphere should become operational in summer 2009.

Weak constraint 4D-Var with a 4D state control variable is a fully
four dimensional problem where Jq acts as a coupling term between
sub-windows.
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Weak Constraints 4D-Var: Open Questions

Weak Constraint 4D-Var allows the perfect model assumption to be
removed.

it requires knowledge of the statistics of model error, and the ability
to express this knowledge in the form of covariance matrices.

What is the best model error covariance matrix?

4D-Var can handle correlated model error. What type of correlation
model should be used?

How can we distinguish model error from observation bias or other
errors in the system?

The statistical description of model error is one of the main current
challenges in data assimilation.
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Weak Constraints 4D-Var: Open Questions

Weak Constraint 4D-Var allows the perfect model assumption to be
removed.

This allows longer windows to be contemplated.

How much benefit can we gain from long window 4D-Var? How far
from the optimal is 4D-Var with a 12h-window?

Long window weak constraint 4D-Var is equivalent to a full rank
Kalman smoother: it could be an efficient algorithm to implement it.

Although the two weak constraint 4D-Var approaches are
mathematically equivalent, they lead to very different minimization
problems, with different possibilities for preconditioning. It is not yet
clear which approach is the best.

Can we combine the benefits of treating sub-windows in parallel with
efficient minimization?

Formulation of an incremental method for weak constraint 4D-Var
remains a topic of research.
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