
Variational Data Assimilation
Current Status

Yannick Trémolet
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Maximum Likelihood

We define the analysis xa as the most probable state of the system
given a background state xb and observations y:

xa = arg max
x

p(x|y and xb)

It will be convenient to define a cost function:

J(x) = − log p(x|y and xb) + K

where K is a constant.

Since log is a monotonic function, xa is also:

xa = arg min
x

J(x)

Variational data assimilation comprises minimizing the cost function
J(x).
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Maximum Likelihood and Bayes’ Theorem

Applying Bayes’ theorem gives:

p(x|y and xb) =
p(y and xb|x)p(x)

p(y and xb)

p(y and xb) is independent of x and a priori we know nothing about x
(all values of x are equally likely) thus p(x) is also independent of x.

Hence:
p(x|y and xb) ∝ p(y and xb|x)

Finally, if observation errors and backgound errors are uncorrelated:

p(y and xb|x) = p(y|x)p(xb|x)

⇒ J(x) = − log p(y|x)− log p(xb|x) + K
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Maximum Likelihood and Cost Function

The maximum likelihood approach is applicable to any probability
density functions p(y|x) and p(xb|x).

Consider the special case of Gaussian p.d.f’s:

p(xb|x) =
1

(2π)N/2|B|1/2
exp

[
−1

2
(x− xb)TB−1(x− xb)

]
p(y|x) =

1

(2π)M/2|R|1/2
exp

[
−1

2
[H(x)− y]TR−1[H(x)− y]

]
where B and R are the background and observation error covariance
matrices and H is the observation operator.

With an appropriate choice of the constant:

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

This is the variational data assimilation cost function.
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Maximum Likelihood: Remarks
The maximum-likelihood approach is general: as long as we know the
p.d.f’s, we can define the cost function.

I Finding the global minimum may not be easy for non-Gaussian p.d.f’s.

In practice, background errors are usually assumed to be Gaussian (or
a nonlinear transformation is applied to make them Gaussian).
Non-Gaussian observation errors are taken into account.

I Directionally-ambiguous wind observations from scatterometers,
I Observations contaminated by occasional gross errors, which make

outliers much more likely than implied by a Gaussian model.

For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution. This
is not the case in general:
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3D-Var and 4D-Var

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

We have not precisely defined the space over which the state variable
x is defined or the observation operator H.

Depending on the choice of x and H, the general approach described
earlier will lead to different variational data assimilation methods.

The simplest approach is to consider x as the state over the 3D spatial
domain at analysis time, while H spatially interpolates this state and
converts model variables to observed quantities: this is 3D-Var.

Another more common approach is to consider x as the state over the
3D spatial domain and over the period for which observations are
available, while H spatially and temporally interpolates this state and
converts model variables to observed quantities: this is 4D-Var.
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4D-Var

We now discretize the assimilation window in time and define
x = {xi}i=0,n and y = {yi}i=0,n where xi and yi are the state and
observations at time ti for i = 0, . . . , n.

Assuming that observation errors are uncorrelated in time, R is block
diagonal, with blocks Ri corresponding to the observations at time ti .

The 4D-Var cost function is:

J(x) =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

n∑
i=0

[Hi (xi )−yi ]
TR−1

i [Hi (xi )−yi ]

Hi represents a spatial interpolation and transformation from model
variables to observed variables (i.e. a 3D-Var-style observation
operator).
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Strong Constraint 4D-Var

The states at various times are not independent: they are related
through the forecast model:

xi =Mi (xi−1)

where Mi is the forecast model integrated from time ti−1 to time ti .

By introducing the vectors xi , the unconstrained minimization
problem:

xa = arg min
x

J(x)

became a strong constraints minimization problem:

xa = arg min
x0

J(x0, x1, · · · , xk)

subject to xi = Mi (xi−1) for i = 1, . . . , n

This form of 4D-Var is called strong constraint 4D-Var.
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Strong Constraint 4D-Var

The 4D-Var cost function is:

J(x0, x1, . . . , xk) =
1

2
(x0 − xb)TB−1(x0 − xb)

+
1

2

n∑
i=0

[Hi (xi )− yi ]
TR−1

i [Hi (xi )− yi ]

4D-Var determines the analysis state at every gridpoint and at every
time within the analysis window i.e. a four-dimensional analysis of the
available asynoptic data.

In deriving strong constraint 4D-Var, we have assumed that the
observation operators and the model are perfect.

As a consequence of the perfect model assumption, the analysis
corresponds to a trajectory (i.e. an integration) of the forecast model.

We will remove this assumption in the next lecture.
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Minimizing the cost function

We want to minimize the cost function:

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

This is a very large-scale minimization problem (dim(x) ≈ 300× 106

for the operational system at ECMWF.)

Derivative-free algorithms are too slow (because each function
evaluation gives very limited information about the shape of the cost
function and in which direction the minimum might be).

Practical algorithms for minimizing the cost function require its
gradient.

The simplest gradient-based minimization algorithm is called steepest
descent:

I Repeat until the gradient is sufficiently small:
I Define a descent direction: dk = −∇J(xk).
I Find a step αk , (line search) for which J(xk + αdk) < J(xk).
I Set xk+1 = xk + αdk .
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Minimizing the cost function

Steepest descent can work well
on very well conditioned
problems in which the
iso-surfaces of the cost function
are nearly spherical.

In this case, the steepest
descent direction points towards
the minimum.

For poorly conditioned problems,
with ellipsoidal iso-surfaces,
steepest descent is not efficient.
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Minimizing the cost function

Steepest Descent is inefficient because it does not use information
about the curvature (i.e. the second derivatives) of the cost function.

The simplest algorithm that uses curvature is Newton’s method.

Newton’s method uses a local quadratic approximation:

J(x + δx) ≈ J(x) + δxT∇J(x) +
1

2
δxT J ′′δx

Taking the gradient gives:

∇J(x + δx) ≈ ∇J(x) + J ′′δx

Since the gradient is zero at the minimum, Newton’s method chooses
the step at each iteration by solving:

J ′′δx = −∇J(x)

Newton’s method works well for cost functions that are well
approximated by a quadratic function (i.e. for quasi-linear observation
operators).
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Minimizing the cost function

Newton’s method requires us to solve J ′′δxk = −∇J(xk) at every
iteration.

J ′′ is a ∼ 108 × 108 matrix! Clearly, we cannot explicilty construct the
matrix, or use direct methods to invert it.

However, if we have a code that calculates Hessian-vector products,
then we can use an iterative method (e.g. conjugate gradients) to
solve for δxk .

Such a code is called a second order adjoint. (See Wang, Navon,
Le Dimet and Zou, 1992, Meteor. and Atmos. Phys.)

Alternatively, some methods construct an approximation to J ′′ or
(J ′′)−1: these methods are called quasi-Newton methods.

The most popular quasi-Newton method are the BFGS algorithm,
(named after its creators Broyden, Fletcher, Goldfarb and Shanno)
and its variant, the limited memory BFGS method.
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Minimizing the cost function

The methods presented so far apply to general nonlinear functions.

An important special case occurs if the observation operator H is
linear. In this case, the cost function is strictly quadratic, and the
gradient is linear.

In this case, it makes sense to determine the analysis by solving the
linear equation ∇J(x) = 0.

Since the matrix J ′′ = B−1 + HTR−1H is symmetric and positive
definite, the best algorithm to use is conjugate gradients.

A good introduction to the method can be found online: An
Introduction to the Conjugate Gradient Method Without the
Agonizing pain, Shewchuk (1994).

This will be useful in the incremental 4D-Var.
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The Incremental Method
A variant of the Newton method can be used: the nonlinear cost
function is approximated by a quadratic cost function around the
current guess. This quadratic cost function is minimized to provide an
updated guess and the process is repeated.
One complex problem is replaced by a series of (slightly) easier
problems.

kx xk+1 xk+2

The conjugate gradient algorithm can be used to solve efficiently the
quadratic minimization problems.
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The Incremental Method

The cost function is written as a function of the correction to the first
guess (the increment) δx = x− xg :

J(xg + δx) =
1

2
(xg + δx− xb)TB−1(xg + δx− xb)

+
1

2
[H(xg + δx)− y]TR−1[H(xg + δx)− y]

The quadratic approximation of the cost function is obtained by
linearizing around the curent guess:

J(δx) =
1

2
(δx + b)TB−1(δx + b) +

1

2
(Hδx + d)TR−1(Hδx + d)

where b = xg − xb , d = H(xg )− y and H is the Jacobian of H.

The gradient is:

∇J(δx) = B−1(δx + b) + HTR−1(Hδx + d)
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Calculating the Gradient: Tangent Linear and Adjoint

To minimize the cost function, we must be able to calculate its
gradient:

∇J(δx) = B−1(δx + b) + HTR−1(Hδx + d)

The Jacobians H and HT are much too large to be represented
explicitly: we can only represent these as operators (subroutines) that
calculate matrix-vector products.

These codes are called the tangent linear code for H and the adjoint
code for HT .

For a good introduction about writing adjoints, see:
X. Y. Huang and X. Yang, 1996, Variational Data Assimilation with
the Lorenz model, HIRLAM Technical Report 26.
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Writing the Adjoint Code

Each line of the subroutine that applies H (including the forecast
model) can be considered as a function hk , so that

H(x) ≡ hK ◦ hK−1 ◦ · · · ◦ h1(x).

Each of the functions hk can be linearized, to give the corresponding
linear function hk . Each of these is extremely simple, and can be
represented by one or two lines of code.

The resulting code is called the tangent linear of H and:

Hδx ≡ hKhK−1 · · ·h1δx

The transpose, HT δx ≡ hT
1 hT

2 · · ·hT
K δx, is called the adjoint of H.

Again, each hT
k is extremely simple – just a few lines of code.

The difficulties in writing an adjoint can come from:
I Non differentiable functions in the nonlinear cost function (model

physics),
I The length of the code (automatic tools can help).
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The Incremental Method

The 4D-Var cost function and its gradient can be evaluated for the
cost of:

I one integration of the forecast model,
I one integration of the adjoint model.

This cost is still prohibitive:
I A typical minimization requires between 10 and 100 iterations,
I The cost of the adjoint is typically 3 times that of the forward model.
I The cost of the analysis would be roughly equivalent to between 20

and 200 days of model integration (with a 12h window).

The incremental algorithm reduces the cost of 4D-Var by reducing the
resolution of the model and using simplified physics (or by using a
perturbation forecast model).

The analysis increments are calculated at reduced resolution and must
be interpolated to the high-resolution model’s grid.

The departures d are always evaluated using the full-resolution
versions of H (and M) i.e. the observations are always compared
with the full resolution state.
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Incremental 4D-Var
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Yannick Trémolet (ECMWF) Variational Data Assimilation July 2009 24 / 44



Outline

1 The Maximum Likelihood Approach

2 4D-Var (and 3D-Var)

3 Minimization and Incremental 4D-Var

4 Preconditioning

5 Operational 4D-Var Setup

6 Summary
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Preconditioning

We noted that the steepest descent method works best if the
iso-surfaces of the cost function are approximately spherical. This is
generally true of all minimization algorithms.

The degree of sphericity of the cost function can be measured by the
eigenvalues of the Hessian. (Each eigenvalue corresponds to the
curvature in the direction of the corresponding eigenvector.)

In particular, the convergence rate will depend on the condition
number:

κ = λmax/λmin

The convergence can be accelerated by reducing the condition
number of the Hessian.

The Hessian of the 4D-Var cost function is J ′′ = B−1 + HTR−1H
(plus higher order terms).
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Preconditioning

We can speed up the convergence of the minimization by a change of
variables χ = L−1δx (i.e. δx = Lχ), where L is chosen to make the
cost function more spherical.

A common choice is L = B1/2.

The 4D-Var cost function becomes:

J(χ) =
1

2
χTχ+

1

2
(HLχ− d)TR−1(HLχ− d).

With this change of variables, the Hessian becomes:

J ′′χ = I + LTHTR−1HL.

The presence of the identity matrix in this expression guarantees that
all eigenvalues are ≥ 1.

There are no small eigenvalues to destroy the conditioning of the
problem.
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A case of poor convergence

First experiments with direct assimilation of Meteosat radiance data
showed significant analysis differences far away from observations.

Differences disappeared when the number of iterations was increased:
they were the result of insufficiant convergence.

The conditioning of 4D-Var had been degraded by the inclusion of
Meteosat radiance data.
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Theoretical example

Analysis of one variable at two locations.

Background error σb with correlation α between the two points.

n observations at each point with observation error σo (R = σ2
oI).

Observation operator H is a 2n× 2 matrix with n rows equal to (1 0)
and n rows equal to (0 1). This gives HTR−1H = nI/σ2

o .

The condition number is:

κ =
σ2

b(1 + α) + σ2
o/n

σ2
b(1− α) + σ2

o/n
.

If the grid points are close, α ≈ 1 and κ = 2n(σb/σo)2 + 1.

The conditioning of the problem deteriorates with:
I increasing data density (larger n),
I larger background error (σb),
I more accurate data (smaller σo).
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A case of poor convergence

The lack of convergence with Meteosat data was traced back to too
large humidity background error in very dry areas.

Condition Number Original bg error Modified bg error
Without Meteosat data 2229 2208

With Meteosat data 4495 2232

Is there a more systematic way of achieving good preconditioning?
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Hessian Preconditioning

The incremental cost function can be written as:

J(δx) =
1

2
δxT J ′′δx + gT δx + c .

Preconditioning replaces J(x) by:

Jχ(χ) =
1

2
χTLT J ′′Lχ+ gTLχ+ c .

The difficulty is to find L such that κ(LT J ′′L)� κ(J ′′)

A perfect preconditioner would be L = (J ′′)−1/2.
(If κ(LT J ′′L) = 1, the minimisation converges in one iteration.)

Is there an approximation of the Hessian that can easily be inverted?
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Hessian Eigenvectors Preconditioning

The Hessian can be written as: J ′′ =
N∑

k=1

λkvkv
T
k

where λk and vk are its eigenvalues and eigenvectors.

Preconditioning based on the K leading eigenvectors of J ′′:

L−1 = I +
K∑

k=1

(µ
1/2
k − 1)vkv

T
k

gives J ′′χ =
K∑

k=1

µkλkvkv
T
k +

N∑
k=K+1

λkvkv
T
k .

Choose µk verifying µkλk < λK+1, then

κ(J ′′χ) = λK+1/λN = λK+1.

The eigenvectors can be computed using the Lanczos method, which
is very closely related to the conjugate gradient algorithm.
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Conjugate Gradient and Lanczos Algorithm

The relation between Conjugate Gradient and Lanczos Algorithms
allows to simultaneously:

I Minimise the cost function,
I Compute the eigenvectors and eigenvalues of the Hessian.

The connection can be exploited to improve the minimisation:
I At each outer loop iteration, the eigenvectors and eigenvalues of the

Hessian can be computed,
I They are used to precondition the minimisation in the following outer

loop iteration.

The 4D-Var eigenvectors are large scale:
I They can be computed at low resolution and used to precondition a

higher resolution miminization.
I This leads to multi-incremental algorithm.

It only applies to strictly quadratic inner loop cost functions: Var QC,
QuickScat ambiguous winds in outer loop.
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Superlinear Convergence and Rounding Error

When λmax or λmin has converged in the Lanczos process, J(x) has
been fully minimised in the direction of the eigenvector.

The minimisation then behaves as if it were minimising a problem
with a smaller condition number κ = λmax/λmin.

Conjugate Gradients should converge superlinearly.

In practice, rounding errors spoil things, making the convergence
linear.

Rounding error causes the Lanczos algorithm to produce spurious
multiple copies of eigenvectors.

The two effects are connected.

A well-known method of preventing spurious multiple eigenvalues in
the Lanczos algorithm is to explicitely orthogonalise the gradient
vectors. This method also restores superlinear convergence in CG.
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Operational 4D-Var Setup

Strong constraint 4D-Var has been used in operations at ECMWF
since 25 Nov. 1997.

The current configuration uses a 12h cycling window.

The outer loop (and forecast) resolution is T799 (25km).

The inner loops resolutions are T95, T159 and T255 (200, 125 and
80 km).

On average, 9 million observations are assimilated per 12h cycle.

96% of assimilated data is from satellites.

On average, 4D-Var runs on 1536 CPUs in 1h10.
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Observation Coverage

6 February 2009
00 UTC ± 3h
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Observation Sources

Assimilating new data types requires a lot of ressources (developments and
computer time).
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Observation Numbers

Observation numbers have increased regularly and will increase even faster
in the future.
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Observation Usage

Data count for one 12h 4D-Var cycle
(0900-2100 UTC, 3 March 2008)

Screened Assimilated

Synop: 450,000 0.3% 64,000 0.7%
Aircraft: 434,000 0.3% 215,000 2.4%
Dribu: 24,000 0.02% 7,000 0.1%
Temp: 153,000 0.1% 76,000 0.8%
Pilot: 86,000 0.1% 39,000 0.4%
AMV’s: 2,535,000 1.6% 125,000 1.4%
Radiance data: 150,663,000 96.9% 8,207,000 91.0%
Scat: 835,000 0.5% 149,000 1.7%
GPS radio occult. 271,000 0.2% 137,000 1.5%

TOTAL: 155,448,000 100.0% 9,018,000 100.0%

We are still far from using all available observations.
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Performance
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Forecast performance has increased regularly over the years.
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Summary

The Maximum Likelihood approach is general and can be in principle
be applied to non-Gaussian, nonlinear analysis.

3D-Var and 4D-Var derive from the maximum likelihood principle.

4D-Var is an extension of 3D-Var to the case where observations are
distributed in time.

The cost function is minimized using algorithms based on knowledge
of its gradient.

The incremental method with appropriate preconditioning allows the
computational cost to be reduced to acceptable levels.

In strong constraint 4D-Var the model is assumed to be perfect, so
that the four-dimensional analysis state corresponds to an integration
(trajectory) of the model.
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Summary

Most (all?) of the main NWP centres run variational data
assimilation schemes operationally.

I ECMWF, United Kingdom, France, Germany, Canada, USA (NCEP,
NRL, GMAO), Japan, Korea, Taiwan, China, Australia, HIRLAM
countries, ALADIN countries...

Forecast performance has improved over the years, in particular
because of the ability of variational systems to adapt to and benefit
from the varying components of the global observing system.

Other aspects are important but were not covered in this talk:
I Modelling of B and balance considerations,
I Definition of the observation operators,
I Observation variational bias correction.
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