
II.B.2

COMPUTATIONAL ISSUES

TOM ROSMOND

NRL, Monterey (SAIC)

JCSDA Summer Colloquium on Data
Assimilation

Stevenson, Washington

July 7 – 17, 2009

II.B.2

COMPUTATIONAL ISSUES

Outline

• Historical Overview

- Analysis Data Assimilation

- Forecast model Data Assimilation

- Conventional Data Satellite Data

•Computational Environments
- Mainframe computers

Vector supercomputers
Massively parallel computers
Cluster supercomputers & Workstations

•Programming
- Languages
- Relationship to computational environments

•Why is this a topic of this course?
- Like it or not, we all spend a LOT of time struggling with

these issues
- Better understanding, and facility at dealing with the issues,

will pay off in more scientific productivity

II.B.2

COMPUTATIONAL ISSUES

• Today ‘Data Assimilation’ has replaced ‘Objective Analysis’
- Update cycle
- Data quality control
- Initialization

• NWP computational costs (Before late 1970’s)
- Objective analysis relatively inexpensive
- Forecast model(s) dominated

• NWP computational costs (1980’s & 1990’s)
- Data volumes increased dramatically
- Model & Data assimilation costs roughly equivalent

• NWP computational costs (Today)
- Data volumes continue to increase
- Data assimilation costs often exceed model costs

4Dvar with multiple outer loops
Ensemble based DA
Non-linear observation operators (radiance assimilation)

II.B.2

COMPUTATIONAL ISSUES

Current computational challenges

•Massive increases in data volume, e.g. NPOESS

•Ensemble based covariances (ETKF)

•Marriage of 4Dvar and ensemble methods?

•Non-linear observation operators

- Radiance assimilation

- Radar data for mesoscale assimilation

•Heterogeneous nature of DA

- Significant serial processing

- Parallelism at script level?

•Data assimilation for climate monitoring

II.B.2

COMPUTATIONAL ISSUES

Other challenges

•Distinction between DA ‘people’ and ‘modelers’ blurring

- TLM & Adjoint models in 4Dvar

- Ensemble models for covariance calculation

• Scientific computing no longer dominant

- Vendor support waning

- Often multiple ‘points of contact’ for problems

II.B.2

COMPUTATIONAL ISSUES

Computing environments: 1960’s – 1970’s

• IBM, CDC, DEC, etc

• Mainframe computers, proprietary hardware

• Proprietary operating systems

• No standard binary formats

• Little attention paid to standards

• Code portability almost non-existent

• Users became vendor ‘shops’

II.B.2

COMPUTATIONAL ISSUES

Computing environments: 1980’s – mid 1990’s

• ‘Golden Age’ of scientific computing

• Scientific computing was king

• Vector supercomputers, proprietary hardware

• Price/performance : supercomputer cheapest

• Cray, CDC (ETA), Fujitsu, NEC, IBM

• Excellent vendor support (single point of contact)

• Cray became defacto standard (UNICOS, CF77)

• First appearance of capable desktop WS’s and PC’s

II.B.2

COMPUTATIONAL ISSUES

Computing environments: mid 1990’s - today

• Appearance of massively parallel systems

• Commodity based hardware

• Open source software environments (Linux, GNU)

• Scientific computing becoming niche market

• Vendor support waning

• Computing environments a collection of 3rd party components

• Greater emphasis on standards: data and code

• Portability of DA systems a priority

• Sharing of development efforts essential

II.B.2

COMPUTATIONAL ISSUES

Challenges

• DA is by nature a heterogeneous computational problem
- Observation data ingest and organization
- Observation data quality control/selection
- Background forecast: NWP model
- Cost function minimization (3Dvar/4Dvar)
- Ensemble prediction (ensemble DA)

• Parallelism also heterogeneous
- Source code
- Script level
- An important contribution to complexity of DA systems
- SMS (developed by ECMWF, licensed to other sites)

II.B.2

COMPUTATIONAL ISSUES

NAVDAS-AR Components

II.B.2

COMPUTATIONAL ISSUES

MUST always think parallel

• Programming models
- OpenMP
- Message Passing (MPI)
- Hybrids
- Co-array Fortran
- High-Performance Fortran (HPF)

• Parallel Performance (How well does it scale)
- Amdahl’s Law
- Communication fabric (network)
- Latency dominates over bandwidth in limit
- But: For our problems, load imbalance limiting factor

II.B.2

COMPUTATIONAL ISSUES

Load Balancing: no shuffle

II.B.2

COMPUTATIONAL ISSUES

Load balance + spectral transform “shuffle”

II.B.2

COMPUTATIONAL ISSUES

Load Balancing: with shuffle

II.B.2

COMPUTATIONAL ISSUES

Load Balancing: no shuffle

II.B.2

COMPUTATIONAL ISSUES

Load Balancing: with shuffle

II.B.2

COMPUTATIONAL ISSUES

OpenMP

• Origin was ‘multi-tasking’ on Cray parallel-vector systems

• Relatively easy to implement in existing codes

• Supported in Fortran and C/C++

• ‘Best’ solution for modest parallelism

• Scalability for large processor problems limited

• Only relevant for shared memory systems (not clusters)

• Support must be built into compiler

• ‘On-node’ part of hybrid programming model

II.B.2

COMPUTATIONAL ISSUES

Message Passing (MPI)

• Currently dominates large parallel applications

• Supported in Fortran and C/C++

• External library, not compiler dependent

• Many open source implementations (OpenMPI, MPICH)

• Works in both shared and distributed memory environments

• 2-sided message passing (send-recv)

• 1-sided message passing (put-get) (shmem)

• MPI programming is ‘hard’

II.B.2

COMPUTATIONAL ISSUES

Hybrid programming models

• MPI + OpenMP

• OpenMP on ‘nodes’

• MPI between ‘nodes’

• Attractive idea, but is it worth it?

• To date, little evidence it is, but experience limited

• Should help load imbalance problems

• Limiting case of full MPI or full OpenMP in single code.

II.B.2

COMPUTATIONAL ISSUES

Co-array Fortran

• Effort to make parallel programming easier

• Attractive concept, but support limited (Cray)

• Adds processor indices to Fortran arrays (co-arrays)

e.g. : x(i,j)[l,k]

• Scheduled to be part of next Fortran standard

II.B.2

COMPUTATIONAL ISSUES

High-performance Fortran (HPF)

• Another effort to make parallel programming easier

• Has been around several years

• Supported by a few vendors (PGI)

• Performance is hardly high (to say the least)

• A footnote in history?

II.B.2

COMPUTATIONAL ISSUES

Scalability 1990’s

II.B.2

COMPUTATIONAL ISSUES

More challenges
•Many ‘supercomputers’ (clusters) use same

hardware and software as desktops

- processors
- motherboards
- mass storage
- Linux

•Price/performance ratio has seemingly improved
dramatically because of this

- A Cray C90 equivalent is about $1000
- 1 Tbyte HD (> $100) is ~ equivalent to the disk storage

of all operational NWP centers 25 years ago

II.B.2

COMPUTATIONAL ISSUES

Evolution of processor power: ~ 20years

II.B.2

COMPUTATIONAL ISSUES

More challenges
•Current trend of multi-core processors

- 4, 8 cores now common
- multiple processors on single MB

• Problem: Cores increasing, but system bandwidth (bus speed)
isn’t keeping pace

- Terrible imbalance between processor speed and system
bandwidth/latency

• Everything we really want to do depends on this
- Memory access
- IO
- Inter-processor communication (MPI)

• Sandia report: disappointing performance and scalability of
real applications on multi-core systems.

II.B.2

COMPUTATIONAL ISSUES

Impact of processor/node utilization

II.B.2

COMPUTATIONAL ISSUES

Why is this happening

• It is easy (and cheap) to put more cores on a MB

• Marketing: appeals to video game industry

• Everything about the system bandwidth problem COSTS

• One of the byproducts of scientific computing de-emphasis

• Result:
- Our applications don’t scale as well as a few years ago
- ‘Percentage of Peak’ performance is degrading

II.B.2

COMPUTATIONAL ISSUES

Impact of increasing processor/node ratios

II.B.2

COMPUTATIONAL ISSUES

Can we do anything about it?

• Given a choice, avoid extreme multi-core platforms
- A multi-blade system connected with NIC’s (e.g. Myrinet,

Infiniband) will perform better than the equivalent
multi-core system

• Realize there is no free lunch; if you really need a
‘supercomputer’, it will require an fast internal network
and other expensive components

• Fortunately, often we don’t need extreme scalability
- For research, we just want a job finished by morning
- In operational environments, total system throughput

is often first priority, and clusters are ideal for this.

II.B.2

COMPUTATIONAL ISSUES

The future: petascale problems?

•Scalability is the limiting factor: problems must be HUGE
- extreme resolution (Atmosphere/Ocean models)
- very large ensembles (Covariance calculation)
- embarrassingly parallel as possible

•Very limited applications

• But: climate prediction is really a statistical problem
so may be our best application

• Unfortunately, DA is not a good candidate
- heterogeneous
- communication/IO intensive

II.B.2

COMPUTATIONAL ISSUES

Programming Languages
• Fortran

- F77
- F90/95

C/C++

• Convergence of languages?
- Fortran standard becoming more object oriented
- Expertise in Fortran hard to find
- C++ language of choice for video games
- But, investment in Fortran code immense

•Script languages
- KSH
- BASH (Bourne)
- TCSH (C-shell)
- Perl, Python, etc

II.B.2

COMPUTATIONAL ISSUES

Fortran, the original scientific language
•Historically, Fortran is a language that allowed a programmer

to get ‘close to the hardware’

•Recent trends in Fortran standard (F90/95)
- e.g. object oriented properties, are designed to hide hardware
- Many features of questionable value for scientific computing
- Ambiguities in standard can make use of ‘exotic’ features

problematic

•Modern hardware with hierarchical memory systems is very
difficult to manage

•Convergence with C/C++ probably inevitable
I won’t have to worry about it, but you might
Investment in Fortran software will be big obstacle

II.B.2

COMPUTATIONAL ISSUES

Writing parallel code

•How many of you have written a parallel (especially MPI) code?

•If possible, start with a working serial, even ‘toy’ version

•Adhere to standards

•Make judicious use of F90/95 features, i.e. more F77 ‘like’
- avoid ‘exotic’ features (structures, reshape, etc)
- use dynamic memory, modules (critical for MPI applications)

•Use ‘big endian’ option on PC hardware

•Direct access IO produces files that are infinitely portable

•Remember, software lives forever!

II.B.2

COMPUTATIONAL ISSUES

Fortran standard questions

•Character data declaration: what is standard?
Character(len=5) char
Character(5) char
Character*5 char

•Namelist input list termination: what is standard?
var,
&end

var,
$end

var
/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

