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Outline

• Historical Overview

- Analysis         Data Assimilation

- Forecast model           Data Assimilation

- Conventional Data         Satellite Data

•Computational Environments
- Mainframe computers

Vector supercomputers
Massively parallel computers
Cluster supercomputers & Workstations

•Programming
- Languages
- Relationship to computational environments

•Why is this a topic of  this course?
- Like it or not, we all spend a LOT of  time  struggling with

these issues
- Better understanding, and facility at dealing with the issues,

will pay off  in more scientific productivity
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• Today ‘Data Assimilation’ has replaced ‘Objective Analysis’
- Update cycle
- Data quality control
- Initialization

• NWP computational costs (Before late 1970’s)
- Objective analysis relatively inexpensive
- Forecast model(s) dominated

• NWP computational costs (1980’s & 1990’s)
- Data volumes increased dramatically
- Model & Data assimilation costs roughly equivalent

• NWP computational costs (Today)
- Data volumes continue to increase
- Data assimilation costs often exceed model costs

4Dvar with multiple outer loops
Ensemble based DA
Non-linear observation operators (radiance assimilation)      
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Current computational challenges

•Massive increases in data volume, e.g. NPOESS

•Ensemble based covariances (ETKF) 

•Marriage of  4Dvar and ensemble methods?

•Non-linear observation operators

- Radiance assimilation

- Radar data for mesoscale assimilation

•Heterogeneous nature of  DA 

- Significant serial processing

- Parallelism at script level?

•Data assimilation for climate monitoring
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Other challenges

•Distinction between DA ‘people’ and ‘modelers’ blurring

- TLM & Adjoint models in 4Dvar

- Ensemble models for covariance calculation

• Scientific computing no longer dominant

- Vendor support waning

- Often multiple ‘points of  contact’ for problems
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Computing environments: 1960’s – 1970’s

• IBM, CDC, DEC, etc

• Mainframe computers, proprietary hardware

• Proprietary operating systems

• No standard binary formats

• Little attention paid to standards

• Code portability almost non-existent

• Users became vendor ‘shops’
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Computing environments: 1980’s – mid 1990’s

• ‘Golden Age’ of  scientific computing

• Scientific computing was king

• Vector supercomputers, proprietary hardware

• Price/performance : supercomputer cheapest

• Cray, CDC (ETA), Fujitsu, NEC, IBM

• Excellent vendor support (single point of  contact)

• Cray became defacto standard (UNICOS, CF77)

• First appearance of  capable desktop WS’s and PC’s
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Computing environments: mid 1990’s - today

• Appearance of  massively parallel systems

• Commodity based hardware

• Open source software environments (Linux, GNU)

• Scientific computing becoming niche market

• Vendor support waning

• Computing environments a collection of  3rd party components

• Greater emphasis on standards: data and code

• Portability of  DA systems a priority

• Sharing of  development efforts essential
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Challenges

• DA is by nature a heterogeneous computational problem
- Observation data ingest and organization
- Observation data quality control/selection
- Background forecast: NWP model
- Cost function minimization (3Dvar/4Dvar)
- Ensemble prediction (ensemble DA)

• Parallelism also heterogeneous
- Source code 
- Script level
- An important contribution to complexity of  DA systems
- SMS (developed by ECMWF, licensed to other sites)
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NAVDAS-AR Components
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MUST always think parallel

• Programming models
- OpenMP
- Message Passing (MPI) 
- Hybrids
- Co-array Fortran
- High-Performance Fortran (HPF)

• Parallel Performance (How well does it scale)
- Amdahl’s Law
- Communication fabric (network)
- Latency dominates over bandwidth in limit
- But: For our problems, load imbalance limiting factor
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Load Balancing: no shuffle
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Load balance + spectral transform “shuffle”
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Load Balancing: with shuffle
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Load Balancing: no shuffle
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Load Balancing: with shuffle
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OpenMP

• Origin was ‘multi-tasking’ on Cray parallel-vector systems

• Relatively easy to implement in existing codes

• Supported in Fortran and C/C++

• ‘Best’ solution for modest parallelism

• Scalability for large processor problems limited

• Only relevant for shared memory systems (not clusters)

• Support must be built into compiler

• ‘On-node’ part of  hybrid programming model
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Message Passing (MPI)

• Currently dominates large parallel applications

• Supported in Fortran and C/C++

• External library, not compiler dependent

• Many open source implementations (OpenMPI, MPICH)

• Works in both shared and distributed memory environments

• 2-sided message passing (send-recv)

• 1-sided message passing (put-get) (shmem)

• MPI programming is ‘hard’
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Hybrid programming models

• MPI + OpenMP

• OpenMP on ‘nodes’

• MPI between ‘nodes’

• Attractive idea, but is it worth it?

• To date, little evidence it is, but experience limited

• Should help load imbalance problems

• Limiting case of  full MPI or full OpenMP in single code.
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Co-array Fortran

• Effort to make parallel programming easier 

• Attractive concept, but support limited (Cray)

• Adds processor indices to Fortran arrays (co-arrays)

e.g.   :   x(i,j)[l,k]

• Scheduled to be part of  next Fortran standard
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High-performance Fortran (HPF)

• Another effort to make parallel programming easier

• Has been around several years

• Supported by a few vendors (PGI)

• Performance is hardly high (to say the least)

• A footnote in history?
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Scalability 1990’s
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More challenges
•Many ‘supercomputers’ (clusters) use same  

hardware and software as desktops

- processors
- motherboards
- mass storage
- Linux 

•Price/performance ratio has seemingly improved 
dramatically  because of   this 

- A Cray C90 equivalent is about $1000 
- 1 Tbyte HD (> $100)  is ~ equivalent to the disk storage

of  all operational NWP centers 25 years ago
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Evolution of  processor power: ~ 20years
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More challenges
•Current trend of  multi-core processors

- 4, 8 cores now common
- multiple processors on single MB

• Problem: Cores increasing, but system bandwidth (bus speed)
isn’t keeping pace

- Terrible imbalance between processor speed and system
bandwidth/latency

• Everything we really want to do depends on this
- Memory access
- IO
- Inter-processor communication (MPI)

• Sandia report: disappointing performance and scalability of  
real applications on multi-core systems.
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Impact of  processor/node utilization
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Why is this happening

• It is easy ( and cheap) to put more cores on a MB

• Marketing: appeals to video game industry

• Everything about the system bandwidth problem COSTS

• One of  the byproducts of  scientific computing de-emphasis

• Result:
- Our applications don’t scale as well as a few years ago
- ‘Percentage of  Peak’ performance is degrading
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Impact of  increasing processor/node ratios
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Can we do anything about it?

• Given a choice, avoid extreme multi-core platforms
- A multi-blade system connected with NIC’s (e.g. Myrinet, 

Infiniband) will perform better than the equivalent 
multi-core system

• Realize there is no free lunch; if  you really need a  
‘supercomputer’, it will require an fast internal network
and other expensive components

• Fortunately, often we don’t need extreme scalability
- For research, we just want a job finished by morning
- In operational environments, total system throughput

is often first priority, and clusters are ideal for this.
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The future: petascale problems?

•Scalability is the limiting factor: problems must be HUGE
- extreme resolution (Atmosphere/Ocean models)
- very large ensembles (Covariance calculation)
- embarrassingly parallel as possible

•Very limited applications

• But: climate prediction is really a statistical problem
so may be our best application

• Unfortunately, DA is not a good candidate
- heterogeneous 
- communication/IO intensive



II.B.2

COMPUTATIONAL ISSUES

Programming Languages
• Fortran

- F77
- F90/95

C/C++

• Convergence of  languages?
- Fortran standard becoming more object oriented
- Expertise in Fortran hard to find
- C++ language of  choice for video games
- But, investment in Fortran code immense

•Script languages
- KSH
- BASH (Bourne)
- TCSH (C-shell)
- Perl, Python, etc
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Fortran, the original scientific language 
•Historically, Fortran is a language that allowed a programmer

to get ‘close to the hardware’

•Recent trends in Fortran standard (F90/95)
- e.g. object oriented properties, are designed to hide hardware
- Many features of  questionable value for scientific computing
- Ambiguities in standard can make use of  ‘exotic’ features 

problematic

•Modern hardware with hierarchical memory systems is very
difficult to manage

•Convergence with C/C++ probably inevitable
I won’t have to worry about it, but you might
Investment in Fortran software will be big obstacle
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Writing parallel code

•How many of  you have written a parallel ( especially MPI) code?

•If  possible, start with a working serial, even ‘toy’ version

•Adhere to standards

•Make judicious use of  F90/95 features, i.e. more F77 ‘like’
- avoid ‘exotic’ features (structures, reshape, etc)
- use dynamic memory, modules (critical for MPI applications)

•Use ‘big endian’ option on PC hardware

•Direct access IO produces files that are infinitely portable

•Remember, software lives forever!
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Fortran standard questions

•Character data declaration: what is standard?
Character(len=5) char
Character(5)  char
Character*5  char

•Namelist input list termination: what is standard?
var,
&end

var,
$end

var
/
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