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Satellite observations

Surface soil moisture 
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP)

Snow water 
equivalent

(AMSR-E, SSM/I, 
SCLP)Land surface temperature 

(MODIS, AVHRR,GOES,… )

Water surface elevation 
(SWOT)

Snow cover fraction 
(MODIS, VIIRS, MIS)

Terrestrial water storage (GRACE)
Land data assimilation system

Precipitation 
(TRMM, GPM)

Vegetation/Carbon 
(AVHRR, MODIS, DESDynI, 

ICESat-II, HyspIRI, LIST, 
ASCENDS )

soil 
moisture snow, 

precip.

veg., snow, radiation

LSTRadiation 
(CERES, CLARREO )



Land surface models

Surface water balance:

dS/dt = P – E – R

Surface energy balance:

dE/dt = G = Rs – LE – SH

Soil water redistribution:

“Richards’ equation”

Soil heat redistribution:

Heat diffusion equation



Temporal and spatial scales, discretization

Vertical: ~1 m

Horizontal: 10 m…100 km (watershed to global)

Time: 15 min time steps

H
V

Not to 
scale!!!

Vertical columns are 
modeled independently.



Land surface heterogeneity

“Mosaic” approach 

with lots of parameters…



Land surface models

Bucket model
BATS
LSM
OSU NOAA
Noah model NOAA/NCEP, NWS
Community Land Model NCAR 
Common Land Model
VIC (Variable Infiltration Capacity) Princeton/U Washington
Toplats Princeton
SiB (Simple Biosphere Model) NASA
MOSAIC NASA
PLACE NASA
Catchment Land Surface Model NASA
ISBA Meteo-France
TESSEL ECMWF
Terra DWD
…and many more…

… there are as many land surface models as there are modelers…



Models agree on soil moisture only after “re-normalization”

Boone et al. (2004) J Climate
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system

“uncoupled” or “off-line” land assimilation



States
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Subsystem is often called “LDAS”



States
Soil moisture, snow, LST,  
terrestrial water storage, …

“Optimal”
land surface 

estimates

Analysis

Land 
surface 
model

What is special about land assimilation?

Atmosphere-ocean 
modeling & analysis 

system

Land surface OBSERVATIONS 
(Satellite and conventional)

APPLICATIONS

Weights based 
on uncertainties.

Land data 
assimilation  

system

“Model” 
estimates

Forcings
Precipitation, radiation, 
air temperature, …

Parameters
Soil, vegetation, albedo, …

Land model: 
“Local” and 
“damped” 
physics; 
(mostly) non-
differentiable 
equations. 

Land obs:
Satellite obs. 
typically no 
better than 
land “model” 
estimates and 
are typically 
limited to the 
surface.

Modest improvements from 
assimilation of “state” obs. 

Ensemble-based analysis system 
perhaps most appropriate.

Focus on errors in model forcing 
(as opposed to initial condition).



Filters

Kalman filter approaches (KF, EKF, EnKF, …)

Particle filters

Smoothers 

Strong- and weak-constraint variational (representers)

Ensemble-based smoothers

Land assimilation methods



yk

Propagation tk-1 to tk:

xk
i- = f(xk-1

i+,ek
i)

e = model error

Ensemble Kalman filter (EnKF)

Update at tk:
xk

i+ = xk
i- + Kk(yk

i - xk
i- )

for each ensemble member i=1…N
Kk = Pk (Pk + Rk)-1

with Pk computed from ensemble spread
Andreadis and Lettenmaier (2005); Durand and Margulis (2007); Kumar et al. (2008a, 2008b, 2009); Pan and Wood (2006); Reichle et al. (2002a, 2002b, 2007, 2008a, 

2008b, 2009);  Reichle and Koster (2003, 2004, 2005);  De Lannoy et al. (2007); Crow and Reichle (2008); Zaitchik et al. (2008); Zhou et al. (2006)

Nonlinear ensemble
propagation approximates 
model errors.
Apply small perturbations to 
each ensemble member (model 
forcings and states) at every 
time step.
Linearized analysis update

xk
i state vector (eg soil moisture)

Pk state error covariance

Rk observation error covariance
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In situ data 
(upper 5…10cm and profile, point scale, hourly - 10 days)

Global soil moisture data sets

Soil moisture retrievals 
not available under 
dense vegetation, near 
open water, in frozen soil.

GSMDB

USDA SCAN

Also: 
TRMM, Windsat; radar 
(active) sensors (ERS-1, 
ERS-2, ASCAT)
Soon:
SMOS, SMAP (1.4 GHz)

Satellite retrievals (6-10 GHz microwave)
(upper 1.25cm, 40-140km, ~1-3 days) AMSR-E (2002-present)

SMMR (1979-87)

Number of data per month



Satellite vs. satellite bias (time avg. soil moisture)

SMMR retrievals much wetter 
than AMSR-E retrievals.

Magnitude of differences 
comparable to dynamic range.

Reichle et al. (2007) J Geophys Res, 
doi:10.1029/2006JD008033.



Satellite vs. model bias

Reichle et al. (2007) J Geophys Res, 
doi:10.1029/2006JD008033.



Satellite vs. model bias

Reichle et al. (2007) J Geophys Res, 
doi:10.1029/2006JD008033.



Satellite vs. model bias

1. Satellite retrievals exhibit large and very different global and 
regional biases in all moments relative to the model.

2. Absolute soil moisture from satellites and model agree equally well
(or poorly…) with ground observations ⇒ no agreed climatology.

3. For model applications, focus on normalized anomalies.

⇒ Scale satellite data before assimilation into a model.

Reichle et al. (2007) J Geophys Res, 
doi:10.1029/2006JD008033.



Soil moisture scaling for data assimilation

Assimilate percentiles.

Reichle and Koster, GRL, 2004 
doi:10.1029/2004GL020938, 2004.



Soil moisture assimilation

• Assimilation product agrees better with ground data than satellite or model alone.
• Modest increase may be close to maximum possible with imperfect in situ data. 
• Use data assimilation for generation of Soil-Moisture-Active-Passive (SMAP) “Level 4” product.

Skill 
(anomaly time series correlation coeff. with in situ data, 

with 95% confidence interval)

N Satellite Model Assim.

Surface soil moisture 46 .35±.01 .44±.01 .50±.01

Root zone soil moisture 41 n/a .43±.01 .49±.01

Soil moisture [m3/m3]
Assimilate AMSR-E 
surface soil moisture 
(2002-08) into NASA 
Catchment model

Validate with USDA SCAN stations
(only 46 of 103 suitable for validation)

Results updated from Reichle et al. (2007) J Geophys Res, doi:10.1029/2006JD008033.

Root zone critical for 
applications but not 
observed by satellite.



AMSR-E (Δ):
ΔR=0.06

SMMR ( ): 
ΔR=0.03

Soil-Moisture-Active-Passive (SMAP) mission design

Results
• Assimilation of (even poor) soil moisture retrievals adds skill (relative to model product). 
• Published AMSR-E and SMMR assimilation products consistent with expected skill levels.
• Derive error budget analysis for SMAP.

Skill (R) of retrievals (surface soil moisture)

Skill improvement of assimilation over model (ΔR)
(root zone soil moisture)

Q: How uncertain can retrievals be and still add 
useful information in the assimilation system? 
A: Synthetic data assimilation experiments.

Skill measured in terms of R
(=anomaly time series 
correlation coefficient against 
synthetic truth).

Each plus sign indicates result 
of one 19-year assimilation 
integration over Red-Arkansas 
domain. Sk
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 (R

) o
f m

od
el

 (r
oo

t z
on

e 
so

il 
m

oi
st

ur
e)

Reichle et al. (2008) Geophys Res Lett, doi:10.1029/2007GL031986.



anomaly RMSE [m3/m3]

Skill (RMSE) of retrievals (surface soil moisture)
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Skill (RMSE) of retrievals (surface soil moisture)
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o = L4_SM (high skill)
x = L4_SM (low skill)
Δ = AMSR-E

Symbols indicate (actual or estimated) 
skill for satellite observations and land 
modeling systems.

surface soil moisture root zone soil moisture

Skill improvement of assimilation over model (ΔRMSE)
(root zone soil moisture)

Skill improvement of assimilation over model (ΔRMSE)
(surface soil moisture)

Uncertainty estimates: OSSE approach 

Anomalies ≡ 
Daily data with 
mean seasonal 
cycle removed



CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

Normalized ROOT ZONE soil moisture improvement 
from assimilation of surface soil moisture

Catchment or MOSAIC “truth” easier to 
estimate than Noah or CLM “truth”.

Catchment and 
Mosaic work better 
for assimilation than 
Noah or CLM.

Catch Mos Noa CLM
Catch 0.71 0.54 0.36 0.38 0.50
Mos 0.55 0.69 0.31 0.33 0.47
Noa 0.43 0.43 0.36 0.26 0.37
CLM 0.11 0.21 0.10 0.45 0.22

0.45 0.47 0.28 0.36 0.39

M
od

el

NIC rzmc Synthetic observations from Avg

Avg

Stronger coupling between surface and 
root zone provides more “efficient” 
assimilation of surface observations.

Multi-model soil moisture assimilation
How does land model formulation impact 

assimilation estimates of root zone soil moisture?

Kumar et al. (2009) J Hydrometeorology, in press.
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Problem 1: 
Satellite and model LST 
inconsistent in vertical.

Good news: Abundance of LST retrievals from infrared and microwave 
sensors on geostationary and polar-orbiting platforms 
(NOAA-xx, MODIS, GOES, METEOSAT, GMS,…)

Land surface temperature (LST) assimilation

Problem 2: 
Satellite and model LST 
inconsistent  in horizontal.

Problem 3: Satellite LST 
sensor- or algorithm-specific.



An example of “model” versus retrieval differences
July 2004 LST: GEOS-5 DAS minus MODIS 

[Bosilovich et al, NASA/GMAO, Mar 2008]

10:30am

1:30pm

10:30pm

1:30am



Bias estimation approach
1.) Off-line (a priori) scaling between climatology of obs. and land model:

Match mean & var for each calendar month and time of day
+ No assumption whether model or observations are biased.
+ Easy to implement in pre-processing.
− Static (cannot adjust to changes in bias).

2.) Dynamic model bias estimation (Dee and da Silva, 1998):
− Assume obs. climatology is correct and the model is biased.
+ Dynamic (adjusts to changes in bias).

Standard Kalman filter: x+ = x- + Kx(y − Hx-)
Kx = PxHT(HPxHT + R)-1

Bias estimation: b+ = b- − Kb(y − H(x-−b-))    2nd Kalman filter
Assume: Pb ~ Px   Kb = γ Kx

Use regular Kalman filter machinery to update bias.
Bias estimate is effectively time average of increments.
Options for diurnal and semi-diurnal bias parameterization.
γ and a relaxation time scale are tuning parameters.



Land surface temperature (LST)

ISCCP = International Satellite Cloud Climatology Project

Archive of Tskin retrievals from many geo-stationary and 
polar-orbiting platforms (NOAA-xx, GOES, METEOSAT,…)
- 3-hourly, mapped to 1 deg lat-lon grid
- clear-sky only!

Assimilate:

Coordinated Energy 
and Water Cycle 
Observations Project

Period 3&4:  
1 Oct ‘02 – 31 Dec ‘04 
(27 months)

51 stations w/ Tskin 
and/or sensible/latent 
heat flux obs

Validate:



Land surface temperature (LST) assimilation

“Model” LST much better than ISCCP.

Assimilation reduces anomaly RMSE by ~0.3 K.

Bias estimation necessary.

Model formulation impacts assimilation strategy.

Assimilate ISCCP LST into 
off-line land models: 
Catchment (CLSM) & Noah.

Validate against CEOP obs. 
(48 stations; 2003-2004).

Anomalies ≡ mean 
seasonal cycle removed

LST: Land surface temp.
LH: Latent heat flux
SH: Sensible heat flux
GH: Ground heat flux
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Model fills spatial 
and temporal data 
gaps, provides 
continuity and 
quality control.

Assimilation output 
• agrees better 
with IMS snow 
cover (top middle)
• contains more 
information 
(~hourly SWE) 
than MODIS 
(~daily snow 
cover) 

Rodell and Houser (2004) J. Hydrometeorology

Snow cover assimilation
O

bservations
M

osaic LSM
 

Control Run SWE (mm)

MODIS Snow Cover (%)

Assimilated SWE (mm)

IMS Snow Cover
(Reference)

Observed SWE (mm)

SWE Change (mm)

21Z 17 January 2003

N
oah LSM

 

Use MODIS snow cover to update model snow water equivalent (SWE)

Snow cover data 
are binary 

“rule-based” 
assimilation



Zaitchik and Rodell, J. Hydromet., 2009, doi:10.1175/2008JHM1042.1

High Plains (n=103)High Plains (n=103)

Southwest (n=28)
―Open
―Push
―Pull
• In situ

Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07

sn
ow

 w
at

er
 e

qu
iv

al
en

t, 
m

m
Snow cover assimilation

Forward-looking “pull” algorithm (smoother): 
• Assess MODIS snow cover 24-72 hours ahead
• Adjust air temperature (rain v. snowfall, snow melting v. frozen)



SWE assimilation and downscaling

Assimilate SWE retrievals 
from satellites (~25 km) into 
high-resolution (1 km) land 
surface model

Questions:
1) Disaggregate prior to 

assimilation?
2) Use local and/or remote 

observations? 

Obs. operator maps 
(fine-scale) model SWE to 
(coarse-scale) observations,
3D update

disagg. obs prior to assim.
1D update 3D update

De Lannoy et al., JHM, 2009, submitted.



Truth

Synthetic 
obs

Model (no 
assim.)

Disagg. 
obs., 1D

Disagg. 
obs., 3D

3D, obs. 
operator

SWE [mm]

Best:
obs. operator, 
3D update

30 Nov 02    15 Jan 03    28 Feb 03    15 Apr 03

SWE assimilation and downscaling

De Lannoy et al., JHM, 2009, submitted.



SWE assimilation and downscaling
Forecast Analysis

Disagg. 
obs., 1D

3D, obs. 
operator

Obs. operator with 3D update preserves fine-scale structure of 
model background.

De Lannoy et al., JHM, 2009, submitted.
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Highly accurate 
measurement of 
distance between 
twin satellites

GRACE measurements

Gravity anomaly

15.0-15.0
Water Storage Anomaly (cm)

Terrestrial water 
storage (TWS) 
anomaly

“Fast” signal (weekly to 
monthly; after correction for 
atmospheric pressure)



Assimilation of GRACE terrestrial water storage (TWS)

GRACE TWS anomaly 
(Jan. 2003 – Jun. 2006 loop)

GRACE measures monthly, basin-scale TWS
= groundwater + soil moisture + snow + surface water

Assimilation should down-
scale GRACE observations 
in space and in time



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

2.) Diagnose large-
scale TWS on the 
5th, 15th, and 25th, 
compute 
innovations (ΔY),  
Kalman gain (K)

3.) Compute 
increments (ΔX)

ΔX = K ΔY
ΔY = Y – M[X]

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

2.) Diagnose large-
scale TWS on the 
5th, 15th, and 25th, 
compute 
innovations (ΔY),  
Kalman gain (K)

3.) Compute 
increments (ΔX)

4.) Apply 
increments during 
second integration

5.) Repeat for next 
month…

ΔX = K ΔY
ΔY = Y – M[X]

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Assimilation of GRACE terrestrial water storage (TWS)

GRACE Assimilation
Terrestrial water storage anomaly (Jan. 2003 – Jun. 2006 loop)

GRACE measures 
large-scale TWS
= groundwater 
+ soil moisture 
+ snow
+ surface water

Assimilation yields:
• fine-scale information subject to 

GRACE basin-scale constraints
• better runoff  than model (not shown).

Zaitchik et al. (2008) J. Hydrometeorology, doi:10.1175/2007JHM951.1



Assimilation disaggregates GRACE data into snow, soil moisture, and groundwater.
Assimilation estimates of groundwater better than model estimates.

Validation against 
observed 
groundwater:

RMSE = 18.5 mm

R2 = 0.49

Assimilation of GRACE terrestrial water storage (TWS)

RMSE = 23.5 mm

R2 = 0.35

Zaitchik et al. (2008) J. Hydrometeorology, doi:10.1175/2007JHM951.1



Assimilation disaggregates GRACE data into snow, soil moisture, and groundwater.
Assimilation estimates of groundwater better than model estimates.

Validation against 
observed 
groundwater:

RMSE = 18.5 mm

R2 = 0.49

Assimilation of GRACE terrestrial water storage (TWS)

RMSE = 23.5 mm

R2 = 0.35

Application: US Drought Monitor

Zaitchik et al. (2008) J. Hydrometeorology, doi:10.1175/2007JHM951.1



Outline

Land surface observations and modeling

Land data assimilation methods

Examples – NOT a review!

• Soil moisture

• Land surface temperature 

• Snow

• Terrestrial water storage

Error modeling and adaptive filtering



Input error parameters Q and R

Weights themselves are subject to error!!!

Wrong weights may lead to poor estimates.

Model soil 
moisture 

(subject to 
error)

Soil 
moisture 
retrievals 
(subject 
to error)

“Optimal”
soil 

moisture

Assimilation

Retrieval error 
covariance R 

(subject to error)

Model error 
covariance Q 

(subject to error)

Study sensitivity to 
error parameters in a 
synthetic experiment



Impact of Q and R on assimilation estimates

RMSE of assimilation estimates v. truth for:

Each “+” symbol 
represents one 
19-year assim. 
experiment over 
the Red-Arkansas 
with a unique 
combination of 
input model and 
observation error 
parameters.

Surface soil moisture m3/m3

input obs error std-dev

Q = model error
(including 
errors in precip, 
radiation, and 
soil moisture 
tendencies)

P = P(Q)
= soil moisture 
error variancefo

re
ca

st
 e

rr
or

 s
td

-d
ev

Reichle et al., doi:10.1029/2007WR006357



sqrt(P(Q_true))

Impact of Q and R on assimilation estimates

RMSE of assimilation estimates v. truth for:

Surface soil moisture m3/m3

• “True” input error covariances yield minimum estimation errors.
• Wrong model and obs. error covariance inputs degrade assimilation estimates.
• In most cases, assimilation still better than open loop (OL).

Reichle et al., doi:10.1029/2007WR006357



sqrt(P(Q_true))

Impact of Q and R on assimilation estimates

Root zone soil moisture m3/m3

• Root zone more sensitive than surface soil moisture.

RMSE of assimilation estimates v. truth for:

Surface soil moisture m3/m3

Reichle et al., doi:10.1029/2007WR006357



Impact of Q and R on assimilation estimates (fluxes)

Sensible heat flux  W/m2 Latent heat flux  W/m2 Runoff  mm/d

RMSE of assimilation estimates v. truth for:

• Fluxes more sensitive to wrong error parameters than soil moisture.
• Sensible/latent heat more sensitive to model error cov than obs error cov

(probably related to ensemble propagation).

Reichle et al., doi:10.1029/2007WR006357



Diagnostics of filter performance and adaptive filtering

innovations ≡ obs – model prediction 
(internal diagnostic)

state err cov + obs err cov
(controlled by inputs)

Find true Q, R by enumeration?  
• RMSE plots require “truth” (not usually available).  
• Too expensive computationally.
Use diagnostics that are available within the assimilation system.

Filter update: x+ = x− + K(y – x−)
K  = P (P + R)−1 = Kalman gain

Diagnostic:  E[(y − x−) (y – x−)T]   =   P + R

time

so
il 

m
oi

st
ur

e Example: Average “obs. 
minus model prediction” 
distance is much larger 
than assumed input 
uncertainties

x− = model forecast
x+ = “analysis”
y =  observation



state err cov + obs err cov
(controlled by inputs)

Find true Q, R by enumeration?  
• RMSE plots require “truth” (not usually available).  
• Too expensive computationally.
Use diagnostics that are available within the assimilation system.

Filter update: x+ = x− + K(y – x−)
K  = P (P + R)−1 = Kalman gain

Diagnostic:  E[(y − x−) (y – x−)T]   =   P + R

Contours: log10 of misfit between 
diagnostic and what it “should” be.
Adaptive filter: Nudge input error 
parameters (Q, R) during assimilation 
to minimize misfit.

Diagnostics of filter performance and adaptive filtering

innovations ≡ obs – model prediction 
(internal diagnostic)

x− = model forecast
x+ = “analysis”
y =  observation

Reichle et al., doi:10.1029/2007WR006357



innovations ≡ obs – model prediction 
(internal diagnostic)

state err cov + obs err cov
(controlled by inputs)

Find true Q, R by enumeration?  
• RMSE plots require “truth” (not usually available).  
• Too expensive computationally.
Use diagnostics that are available within the assimilation system.

Filter update: x+ = x− + K(y – x−)
K  = P (P + R)−1 = Kalman gain

Diagnostic:  E[(y − x−) (y – x−)T]   =   P + R

Contours: misfit between diagnostic 
and what it “should” be.
Adaptive filter: Nudge input error 
parameters (Q, R) during assimilation 
to minimize misfit.

Diagnostic 1:  E[(y − x+) (y – x−)T]   =   R
Diagnostic 2: E[(x+ −x−) (y – x−)T]   =   P(Q)

Diagnostics of filter performance and adaptive filtering

Desroziers et al 2005;  Reichle et al., WRR, 2008;  Li et al., QJRMS 2009

x− = model forecast
x+ = “analysis”
y =  observation



Convergence of adaptive scaling factors

• Adaptive scaling factors generally converge to true values (thick lines).
• Convergence is slow (order of years).
• Spatial variability (thin lines) much greater for alphaQ than for alphaR.

Reichle et al., doi:10.1029/2007WR006357



Adaptive v. non-adaptive EnKF (soil moisture)

Non-adaptive Adaptive Difference

Surface 
soil 
moisture 
m3/m3

Root 
zone soil 
moisture 
m3/m3

• Adaptive filter: Map experiment onto contour plot based on initial guess of R, P(Q).
• Adaptive filter yields improved assimilation estimates for initially wrong model and 
observation error inputs (except for R0=0).

Contours: 
RMSE of 
assim. 
estimates 
v. truth

Reichle et al., doi:10.1029/2007WR006357



Adaptive v. non-adaptive EnKF (fluxes)

Non-adaptive Adaptive Difference
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• Adaptive filter 
generally yields 
improved flux 
estimates.

• Degradation 
when R is 
severely 
underestimated. 

Simply choose 
large R at the 
start and let the 
filter adapt it.

Contours: RMSE  of assim. est. v. truth

Reichle et al., doi:10.1029/2007WR006357



Summary and outlook

Surface soil moisture 
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP)

Snow water 
equivalent

(AMSR-E, SSM/I, 
SCLP)Land surface temperature 

(MODIS, AVHRR,GOES,… )

Water surface elevation 
(SWOT)

Snow cover fraction 
(MODIS, VIIRS, MIS)

Terrestrial water storage (GRACE)
Land data assimilation system

Precipitation 
(TRMM, GPM)

Vegetation/Carbon 
(AVHRR, MODIS, DESDynI, 

ICESat-II, HyspIRI, LIST, 
ASCENDS )

soil 
moisture snow, 

precip.

veg., snow, radiation

LSTRadiation 
(CERES, CLARREO )

SUMMARY
Land assimilation is very different from assimilation in the 
atmosphere and ocean – damped model physics, lack of adjoint.
Focus has been on univariate, off-line assimilation of  soil moisture 
and, to a lesser extent, snow, LST, and TWS.
Observations are typically no more accurate than model estimates.
Bias between and amongst observational data sets and models 
require special attention (a priori scaling and/or dynamic estimation).
Assimilation can improve estimates of land surface states, e.g. root-
zone soil moisture (not directly observed). 
Down-scaling can be accomplished within the assimilation system.
Adaptive filtering may help with estimation of model and observation 
error parameters.
OUTLOOK
Multi-variate assimilation of soil moisture, LST, snow cover, and 
snow water equivalent.
Integrate land and atmospheric data assimilation and investigate 
feedbacks in coupled land-atmosphere analysis system. 
Prepare for new satellite sensors (SMOS, SMAP & other Decadal 
Survey) and new models (dynamic vegetation, crop-growth models)



THANK YOU FOR YOUR ATTENTION!
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