
1

Covariance modeling –
practical applications

R. James Purser
SAIC at NOAA/NCEP/EMC

Camp Springs, Maryland

2

In this talk I want to delve a bit deeper into the practical
applications of the recursive filters to the problem of
synthesizing plausible and effective error covariances
in a numerically highly efficient way.

I will point out a few of the significant challenges and
the strategies being adopted to meet them.

There is an algebraic side to recursive filters which I
will merely skim over – the main emphasis will be on
the geometrical aspects of the problems (and solutions)
that arise. I hope this does not put you off!

3

Recall how we combined two of the simplest “1st-order”
recursive filters, grinding along the grid in one dimension,
and in the same direction, into an equivalent single 2nd-
order filter.

4

Forwards…

5

Then backwards….

6

Forward

Update

vector

= Input

vector

L V1 V0

L0 = 1/(1 – α1 – α2)

L1 = – α1/(1 – α1 – α2)

L2 = – α2/(1 – α1 – α2)

Let’s review how the filters look in matrix/vector terms:

The forward sweep

7

Backward

update

vector

=
Forward

update

vector

L
T

V2 V1

L0 = 1/(1 – α1 – α2)
L1 = – α1/(1 – α1 – α2)

L2 = – α2/(1 – α1 – α2)

The backward sweep

8

S
S
S

0

1

2
S

S

S
S

0

1

2

Backward

update

vector

=
Input

vector

V2 V0

L V = V
T

2 1

LV = V
1 0

SV = V , where S = LL
2 0

T

The one sided filters come from the CHOLESKY factors of S.

9

How do we make the rows and
columns of the INVERSE of S look

like a Gaussian?

Answer: Think spectrally!

The Fourier transform of a Gaussian filter is itself a Gaussian, ~ G(k), in
wavenumber k.

Suitably scale, G (k) ~ exp(+k /2)

But -k is just the spectral representation of the 2nd-derivative operator!

The second derivative operator has an approximate representation as
a tri-diagonal matrix. Higher powers form band matrices.

-1 2

2

10

The solution to the problem of producing a quasi-Gaussian
recursive filter is to base its inverse, S, on the finite
Taylor expansion, in second-derivative, k , of the
exponential function, exp(k /2):

~ 1 + k /2 + (1/2!) (k /2) …

2

2

2 2 2

Lets look at the circularity of the contours of a few 2D combinations of
recursive filters:

11

1st-order
2nd-order

4th order

1st-order
applied
four
times.

12

2nd-order

Negative-Laplacian of filter responses

4th-order

6th-order
True
Gaussian

13

Pictorial displays of the contours of the filter responses
are certainly valuable and informative.

But it is also valuable to have an objective quantitative
measure.

Since we know that the target shape for the 1D filter
is the Gaussian, it would be enough just to find an
objective measure of the “distance” between the
actual 1D filter response profile and the ideal Gaussian
profile of the same standardized width.

14

The Wasserstein “earth-mover’s” metric.

Given two distributions of equal measure, we can define a “distance” or
“metric” between them. The earth-mover’s metric, a special case of the
more general Wasserstein metric, may be thought of as the minimum
number of “wheel-barrow miles” needed to transform a “mountain” of
one distribution’s shape into the mountain of the shape of the other
distribution.

15

n=1 2 3 4 5 6

m = 1 0.14549 0.04366 0.01560 0.00608 0.00250 0.00106

2 0.08160 0.01628 0.00393 0.00104 0.00030 0.00009

3 0.05687 0.00860 0.00158 0.00033 0.00008 0.00004

4 0.04368 0.00534 0.00080 0.00014 0.00005 0.00004

5 0.03547 0.00365 0.00047 0.00008 0.00004 0.00004

6 0.02987 0.00266 0.00030 0.00006 0.00004 0.00004

Table of Wasserstein distance between iterated recursive filter and Gaussian

m = number of iterations of the filter

n = degree of the recursive filter

16

The Wasserstein metric suggests that the use of high-order filters is a more
cost-effective way of approximating the Gaussian ideal than simply applying
the first-order filter many times.

When covariance statistics become spatially inhomogeneous, then the bias
introduced by high-order filters (which then becomes large) can become a
problem. Another problem is that high-order recursive filters, especially
those for which the characteristic scale has become much larger than
grid scale, are quite ill-conditioned and round-off errors seriously spoil
the results with numerical noise.

However, both of these defects of the higher order filters can be partially
mitigated by factoring the Taylor-series polynomial into its real linear and
quadratic parts (there are no linear factors when the filter degree is even,
though). This keeps the bias relatively small when the forward and backward
sweeps are alternated, and the ill-conditioning is much improved (though
not entirely eliminated at large characteristic scales).

4th-order filters seem a good choice overall.

17

The 4th-order filters also allow a non-standard factorization which can
improve the performance of the filtering code in multidimensional
inhomogeneous contexts.

Recall that a 4th Taylor series approximation to the exponential will
have a factorization into two quadratic products, each associated with
A 2nd-degree recursive filter. Call the forward recursive components,
Ax1 and Ax2 and the backward recursive components, Bx1 and Bx2,
when they act in the “x” direction, with Ay1, Ay2, By1, By2, the
corresponding filters in the “y” direction.

Ax1 is the exact adjoint of Bx1, Ax2 the adjoint of Bx2, etc., regardless
of inhomogeneity. The complete self-adjoint x filter, Sx, factors either
as Sx = Ax1*Bx1*Ax2*Bx2 or as Sx=Ax2*Bx2*Ax1*Bx1 (order of
application being from left factor to right factor). However, while
Sx is self-adjoint, the multidimensional combination, Sx*Sy, is not,
since Sx*Sy is NOT equal to Sy*Sx.

Strictly, we should use a combination of filters like:
S = Sx*Sy*Sy*Sx (2D) or S = Sx*Sy*Sz*Sz*Sy*Sx (3D)
since self-adjointness of the complete filter, S, is absolutely a must.

18

A fortuitous feature of the 4th-degree quasi-Gaussian recursive filter
(actually, a property of its polynomial’s factors) is that, even in smoothly
inhomogeneous environments, the 1D portion, Sx, is APPROXIMATELY
factorized by the (EXACTLY) self-adjoint combination:

Sx ~ Ax1*Bx2*Ax2*Bx1.

This lets us adopt a shorter (by a factor of two) sequence of factors in
the multidimensional case. For example, in 2D:

S = Ax1*Bx2*Ay1*By2*Ay2*By1*Ax2*Bx1

This factorization is being coded in the new RF package.

By why restrict to Sx, Sy and Sz ? There should be no restriction!!

19

20

21

22

23

The result is approximately isotropic

24

This is also quasi-Gaussian (but degenerate, so far)

In this case, the filtering was along
generalized parallel, but “non-Cartesian”
lines of the lattice (oriented at 45 degrees).

25

26

27

28

Now we have the end result – quasi-Gaussian,
anisotropic, and non-degenerate.

A “STRETCHED COVARIANCE”!

29

By adopting generalized line filters of the quasi-Gaussian type,
we greatly expand the range of available covariance shapes.

Perhaps, by a suitable selection of lines and their associated
filtering “weights” (2nd-moments, in the given grid units of each line),
it might be possible to synthesize an ANISOTROPIC Gaussian with
ANY degree of anisotropy.

In this case, the (centered and normalized) second moment “spread”
of the Gaussian need to be expressed as a tensor. In the given
lattice coordinates, it is represented by a symmetric matrix:

A =
Axx Axy

Axy Ayy

The “ASPECT” tensor.

30

Valid (positive semi-definite) aspect tensors lie inside a CONE:

Projected onto the hyperboloid, |A|=1, the aspect tensors exhibit a metric –
the distance that measures how much deformation maps one to another.
The geometry of this metric is HYPERBOLIC geometry.

(“Aspect cone”)

31

The line-filters associated with all possible lines
of the lattice each belong to the boundary of the
aspect cone.

We can see their positions on projective maps
of the hyperbolic space. The gnomonic (central)
projection is usually referred to as the “Klein”
mapping; the stereographic projection is conformal
(angle-preserving) and is usually referred to as the
“Poincare” mapping (though both were earlier
used by Beltrami).

32

Line-filters do not by themselves produce “proper” covariances
that enjoy full-rank aspect tensors. But, in 2D, any sequential
pair of such filters will generate a Gaussian with aspect tensor
having full rank. The set of aspect tensors that can come from
the application of two (parallel families of) line filters of the lattice
form a sheet inside the aspect cone whose projection onto the
unit-determinant hyperboloid maps to a curve in either the
Klein or the Poincare representation. In the Klein map, the curve
is a straight chord; in the Poincare map, it is a circular arc that
cuts the “limit circle” at right angles.

33

34

The tiling of the projected space by the regions involving THREE
associated line filters (“TRIADS”) is complete; therefore ANY 2D
aspect tensor can be realized in a Gaussian generated by just
three sequentially applied line filters!

The TRIAD ALGORITHM is the means by which a given aspect
tensor is resolved into its associated triad of line-directions and
filtering “weights”. The resolution exploits linearity of 2nd moments
under composition by sequential application. (Strictly true only when
conditions are spatially homogeneous.)

With a palette of three “colors” we can assign a different color to
the three directions of a given triad. Having done so, the pattern
is extended uniquely to ALL lattice lines by adhering to the condition
that all triads have this complement of “colors”.

This assignment is a convenient means of segregating the filtering
operations, especially in a parallel environment, so that, even when
the aspect tensor changes in space, no filtering operation need
interfere with another at a point that both share.

35

36

37

A problem with the basic triad

In an inhomogeneous environment, it was noticed that, at geographical
locations known to correspond with a transition boundary between two
distinct triads, the filters would produce unsightly numerical noise.

Consider the following example, where a transit through the aspect
cone is given by a chord in the Klein representation cutting several
distinct triad tiles.

38

39

The filtering weights (shown below) are certainly continuous:

40

But noise is produced nevertheless.

41

The problem occurs because the “weights” are essentially proportional
To the SQUARE of the characteristic smoothing distance.

These weights were found to rise from and descend to zero at a
linear rate. At small values, this means that the characteristic scale
exceeds the distance to the transition point itself – it is a bit like a
wave “breaking”.

The solution requires us to find a way to cause the weights to
approach zero at a smoother rate.

Again, by exploiting effective linearity of 2nd moments under
sequential composition of the filters, we can “blend” neighboring
Triads to resolve this difficulty. The price we pay is now requiring
(in general) FOUR (instead of just three) line filters at each place.

42

How do we “blend” triads?

We exploit the additivity of aspect tensors under
composition (eg, by sequential application) of
their associated Gaussian filters. If we can
“compose” a finite number of filters like this,
then why not an infinite number? (…at least
in principle.)

We could replace a single aspect tensor “point”
by any concentric sphere, or spherical shell, of’
points with the same total weight, and the
integrated accumulation of aspect tensor
components would correspond.

43

The “weights” of a triad are also linearly distributed through
the interior of any given triad. This means that, if we have
any weighted distribution of aspect tensors within a given
triad, their accumulated aspect tensor is identical to the
aspect tensor at the centroid of that distribution, weighted
by the total weight of the distribution.

44

Suppose a “ball” of weighted points, weights symmetrically
distributed, replaces the single point aspect tensor. Then
wherever that ball intercepts a triad, replace the intersecting
part of the ball by the centroid of this portion, appropriately
weighted by the weight of this portion. The three line-filters
of this triad act like “coordinate bases” in which to “expend”
this centroid’s weighted aspect tensor. That is, we are
defining the three smoothing “weights” representing this
triad. Repeat for all the triads intercepted. Combine the
filters implied by all the intersected triads in this way and
the resulting composition of filters will have exactly the
same aspect tensor as the single-point aspect we started
from. We have “blended triads” in a way that now combines
(in general) more than one triad (three line filters).

45

If the “ball” used to perform this blending trick has a
radius and radial distribution of weight that varies
only smoothly with the position (in aspect space) of
the center of the ball, then the weights associated
with each line filter will change more smoothly with
ball-center-position than do the weights associated
directly with the (changing) triad of the ball center
by itself.

Blending really implies smoothing.

46

In practice, we wish to blend maximally, within the
constraint that the total number of line smoothers
implied by the blending does not exceed the
minimum bound that is consistent with an effective
amount of weight-smoothing.

In the case of the triads of 2D filtering, this bound
is four and the number of triads blended is just
two.

The “cluster” of two triads is the adjacent pair of
triads that accommodates the largest-radius ball
centered on the target aspect tensor point.

The cluster is centered on a “junction” between
the triads involved.

47
Apply progressive blending of the TWO triads’ weights within red border.

(Klein map)

48

In the case of the straight transit through the aspect cone, the profiles
of the blended weights shows that, at least in the proper interior, the
weights do go to zero smoothly.

49

Problem solved!

50

The color-coding needed to segregate filters for the blended triads:

51

(Each triad
tile is colored
by the color
NOT accounted
for by the 3
line filters.)

52

3D: The HEXAD algorithms.

Six independent components are needed to fully specify the aspect tensor
in 3D. By analogy with the triad algorithm, we therefore expect six
sequential line smoothers, with associated smoothing “weights” to be
necessary and sufficient to generate a Gaussian with any prescribed
valid aspect tensor.

But what is the appropriate configuration of lines of a basic hexad?

There is a systematic resolution of such a question in n dimensions; just
project ALL line generators, assigned equal (unit) “weight”, to aspect space,
and take the CONVEX HULL of the set of their images. The boundary of
this set is a convex polyhedral shell. A given aspect tensor centrally-
projects to a polyhedral “facet” of this shell, and the necessary line filters
are taken from those associated with the vertices of this facet.

53

In n > 3 spatial dimensions, there can be more vertices to the
lucky facet than there are degrees of freedom [n(n+1)/2] in the
aspect tensor. But there is always (at least) one “simplex” subset
of n of the facet’s vertices such that the simplex contains the
projected aspect tensor. (In 4D, some facets have 12 vertices,
while the aspect tensor only needs 10 numbers, for example).

However, in 3D, everything is simple: the convex shell is made up
of congruent simplex “tiles” each (being simplexes) having just the
desired number, six, vertices.

What is the pre-image of each hexad simplex? I.e., what is the
configuration of six line-generators that we associate with a
valid “Hexad”?

Geometrically, the generators, together with their negatives,
form the 12 vertices of a linear deformation of a
“CUBOCTAHEDRON” that contains no other generator.

54

The configuration of line-generators (and their negatives) for the basic
“Hexads” used in a 3D lattice to provide anisotropic covariances.

The hexad of generators always forms a (deformed) CUBOCTAHEDRON
when we fill in the “CONVEX HULL” of generators and their negatives.

The pair shown represent neighboring hexads --- they share five of their
generators, but only (a) possesses g1, while only (b) possesses g7.

55

56

Naturally, the necessity of “blending” is as important for hexads as it
is for the triads. But it is a far more complicated problem, since the
dimensionality of the projective aspect space is now 6-1 = 5.

The “junction” at the center of the “cluster” is, in this case, the
configuration where only three smoothing weights are non-zero,
but in such a way that the aspect tensor remains non-degenerate.

The canonical example is where the three active directions are
the three Cartesian axis directions of the cubic lattice.

The “junction” is in a three-dimensional linear subspace of the
six-dimensional aspect space. The cluster of hexads that surrounds
it amounts to 16 hexads. Here they are:

57

58

As noted, the junction in this case is three-dimensional,
but the interesting structure is in the 3 co-dimensions.

A section through the junction oriented in the most
symmetrical way reduces the junction itself to the central
point and the hexads meet there in a configuration that
looks like this:

59

60

61

A set of 16 hexads that share a common junction is called a
“CLUSTER”.

“Blending” is being done in this case by surrounding the target aspect
tensor with a “spherical shell” of sample points, where the radius of
the shell is as large as it can be made while still intersecting ONLY
hexads that all belong to one cluster. The hexad weights are then
integrated over the entire spherical shell. From the preceding
picture, it may be verified that, in addition to three line-generators
associated with ALL members of a given cluster, ten additional
line-generators are also involved with some members of the cluster,
making a total of 13 possible line filters involved in the blending at
each geographical location.

Solving this geometrical problem requires knowing which clusters
are contenders. We want the cluster whose boundaries are the
most distant, just as in the triads case.

62

In the space of the lattice generators, a cluster is associated with a
2*2*2 “parallelepiped” (we saw this) in the earlier animation of 16
hexads that meet at a junction) ; the 13 generators (and their negatives)
form the 26 points that surround the origin.

There are 16 clusters that intersect a given aspect tensor and that
have the basic hexad in common. These are the contenders that
need to be checked.

The most symmetrical pictures of the set of 16 clusters are obtained,
in physical lattice space, when the lattice is of the closest-packing
“face-centered cubic” form.

Here are the pre-images (lattice space) of the “clusters”, depicted as
their 2*2*2 parallelepipeds:

63

64

In terms of the generator-lattice parallelepipeds,
the picture we obtain from the union of these
16 parallelepipeds is the “starburst”:

65

66

67

Armed with a geometrical appreciation of how the hexads
fit together in six-dimensional aspect space, it is now
possible to carry out a systematic computation of the
blending weights.

In this case, the “ball” of points surrounding the target
aspect point is given a radial profile that makes the
computation of these weights relatively easy.

The best radial profiles to use belong to the family
of “Beta distributions”. See NCEP Office Note 447
for details.

68

The tabulation of the blending weights is actually being done “off-line”.
the necessary tables are five-dimensional, but highly symmetrical
(which saves a lot of storage).

The overall shape of the table is a “simplex”, but symmetry reduces
the non-redundant portion to a fragment of some other polyhedral shape
(unknown) determined by a bunch of inequalities.

At the present time, code to generate the table entries at a sufficient
resolution is being tested. It will involve several thousand table locations,
and each location will need to store 13 normalized blending weights, together
with an index notation to prescribe exactly which line directions are
Involved.

As in the triads examples, the basic hexad and the blended hexad algorithms
are both associated with a color scheme. The basic hexad method needs
seven colors. The blended scheme requires 13, exactly in keeping with
the 13 line directions that belong to a given cluster.

69

Other refinements

• Multigrid option to allow non-Gaussians
• Reformulation of filters in Riemann space
• New normalization in Riemann space
• Nested grids treatment of global scales
• New treatment of parallelization?

70

Possible future considerations

Extend the basic and blended algorithms to four dimensions

Adopt vorticity and divergence as control variables (instead of
stream function and velocity potential. (Multigrid structure might
help with the needed inversions). Vorticity and divergence
patterns are more likely to be quasi-conservative as 4D tracers.

Attempt to represent the analysis~background error ratio in
terms of synthetic recursive filters. This would help to characterize
the analysis error better, and would also provide a tool for better
preconditioning.

71

Thank you for your attention.

	Covariance modeling – �practical applications
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	How do we make the rows and columns of the INVERSE of S look like a Gaussian?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	A problem with the basic triad
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	3D: The HEXAD algorithms.
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Other refinements
	Possible future considerations
	Thank you for your attention.

