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In standard notation, and assuming linearity of all operators, two equivalent
statements of the equation of statistical analysis are:

xa =  xb + B HT (H B HT + R)-1 (y – H xb) 

and

xa = xb + (B-1 + HT R-1 H)-1 HT R-1 (y – H xb)

When we talk about the “covariances” of data assimilation, it is normally the
background error covariances gathered into the giant matrix, B, that we are
referring to.

B-1 is generally not available to us, but C is, where C CT = B.

Which covariances?
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Therefore, we might write:

xa - xb = C v

Solve for v:

v =  + (I + CT HT R-1 H C)-1 CT HT R-1 (y – H xb)

Then solve for xa

The large linear system involved in the solution for v is generally done by
some form of “Krylov” method, such as Conjugate Gradients.

Then the solution only requires application of the operators, I, C, H, HT , R-1.

The nonlocal operator is C. Multiplying by it could potential be very expensive.
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It is always convenient to decompose the analysis
variables into their different kinds of dynamic
fields. For example, From variables, φ,u,v,h, we
might derive:

• balanced (“geostrophic”) streamfunction
• velocity potential
• unbalanced streamfunction
• humidity

We simplify B by assuming the covariances among
DIFFERENT members of the above set vanish. 
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In these talks I shall discuss methods that are devoted mostly to the efficient
numerical execution of the operator, C (and hence B).

An explicit “matrix multiply” for C will not do --- for N grid points this would
entail the vast number, N*N operations. Any viable matrix operation for
such a large N would have to be with a matrix that is narrowly banded, or
the product of a small number of such matrices.

The methods I describe here do involve narrow-band matrices, but rather
Than directly multiplying with them, we shall find that the appropriate operations
are “back-substitution”, which becomes possible when the matrices are both
banded and triangular.

The operations we are describing are those associated with
RECURSIVE FILTERS.

Let’s look at these filters for 1D univariate data.
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Simplest recursive filters

Start with a gridded input of scalar field, V0 . At grid point j  let its value be (V0)j

Let the filter coefficient be α.

The output value of the FORWARD moving filter is (V1)j and is given by,

(V1)j = (1 – α)(V0)j + α(V1)j-1

NOTE: This is OUTPUT

(First order, constant coefficient)
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Note that the application, sequentially 
in index position, j, is indeed of a
numerical cost proportional to the number, 
N, of grid points.

It is a highly efficient operator.

We will take a look at what it does.
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The result is a one-side exponentially-weighted mean of the inputs.

The spatial scale of the exponential depends upon the alpha coefficient.
(A larger alpha means a larger scale).

In order to get rid of the strong bias, we can use a second sequence of
recursive operations, running backwards:

(V2)j = (1 – α)(V1)j + α(V2)j+1

Output again, but now on the
“+” side.
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The bias has gone, but the response is too “spiky”.

The operation is quite cheap --- so let’s run the
result through the forward-backward recursive
filter sequence a second time…..
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We have a nice smooth-looking bell-shaped profile for our “covariance”.

We used the sequence: 

forward, backward, forward, backward.

We could alternatively use the sequence:

forward, forward, backward, backward.

In that case, the two forward sweeps could be combined into a single
2nd-order recursive filter running forwards, and the two backward
sweeps could similarly be combined into a single 2nd-order recursive
filter running backwards.
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What about higher dimensions?

Suppose we follow a symmetrical 
filtering in the “x” direction (all such lines)
with a similar symmetrical filtering in the
“y” direction.

The filters associated with the parallel line 
directions can be done “in parallel” in 
every sense, since they do not mutually 
interfere.
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The 2D distribution, after recursive filtering 
symmetrically in both x and y directions, 
certainly produces a bell-shaped response.

But is it sufficiently rotationally symmetric?
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Not really!

In fact, even after multiple applications of the first-order recursive
filters, the contours continue to show somewhat “diamond” shapes.

Instead of choosing the coefficients of the nth-degree recursive filters
equivalent to n applications of the 1st-order filter, we can construct
the best approximation, at this degree, to the shape G(x) for which
the contours of G(x)G(y) are truly circular.
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Implies,

G(x) = exp(a x2)

For some a. Obviously, we need a < 0.

Hence, the “ideal” profile we seek for our filters
is the 

GAUSSIAN

G[ (x2 + y2)1/2] = G(x) G(y)

NOTE: Our “Gaussian” is a function shape in physical space; NOT
a probability density!
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In the next lecture (practicalities) we shall discuss the ways in which 

(i) The degree of similarity with the Gaussian can be measured, and
(ii) The ways in which the fit to the Gaussian can be improved. 

The important point is that something closely resembling a 
Gaussian convolution CAN be efficiently implemented using
spatial recursive filters that act along the lines of a smooth grid. 
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The isotropic Gaussian by itself is a very restricted form of covariance,
but it is very simple and has often been adopted in both the old empirical
“successive corrections” analysis schemes (Barnes) and in statistical, of
“optimal” analyses (e.g., Derber and Rosati, in the ocean context).

But in the Derber and Rosati scheme, the “Gaussian” is generated by an
explicit simulation of the process of diffusion.

There is no need for diffusion to be constant; can the filters also give
a variable quasi-Gaussian, or quasi-diffusive, response?

Yes, they can!

Also, as Weaver and Courtier showed, the explicit diffusion method can
be used to generate both inhomogeneous (spatially varying) and
anisotropic (varying with angle) responses. Can the filters do this?

Yes they can!
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Reinterpreting the filters
In fact, we can reinterpret the recursive filters that generate inhomogeneous
and anisotropic quasi-Gaussian-shaped response profiles as highly
accelerated numerical simulations of the diffusive process.

The “spread” of the response function is measured by its centered 2nd moment
matrix, or “tensor”. This symmetric tensor contains information about the
aspect ratio of characteristic scales in the principal orthogonal directions,
-- but also encodes the information for those directions. It is convenient to
give it a name – the “aspect tensor”. The aspect tensor equals the diffusivity
When the time duration is fixed at ½ nondimensional time units.

The different lines along which the filters act one-dimensionally can be
thought of as the ways in which the numerical diffusion operator is “split”.

Given that our filters are equivalent (roughly) to generalized diffusion, we
are faced with the decision about the manner in which the diffusion is 
envisaged to take place – there is an ambiguity, which we will now consider.
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Ambiguity of diffusion equations 
corresponding to the same aspect 

tensor
The ambiguity concerns the implied choice of the “metric”.

For example, we could simulate a quasi-Gaussian 
component of a vertical covariance with a vertical scale of 
4000m using physical height coordinates and a diffusivity 
of (4000)^2 applied for duration t=½, and get one result. 
Or we could switch to sigma coordinates and use a 
height-dependent diffusivity of about (sigma/2)^2, and 
express a simple diffusion equation in these sigma 
coordinates, and get a result corresponding to the same 
aspect tensor, but values that differ in detail.
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Resolving the ambiguity

The third diffusion equation above provides a natural way
to resolve this ambiguity. I.e., for each quasi-Gaussian 
component with its given aspect tensor, we let the aspect 
tensor itself define the effective metric.
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Remarks

By adopting the third form of the diffusion equation:

we are committed to filtering in a Riemannian, or
non-Euclidean geometry.

What advantages are there to doing this?
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Inhomogeneous diffusion and the 
amplitude problem

For homogeneous diffusion in a Euclidean geometry,
the solution initiated by an impulse is always a 
GAUSSIAN.

The amplitude is therefore trivially known.

But, even in Euclidean geometry, if the diffusivity is 
inhomogeneous, the outcome is no longer exactly 
Gaussian and the amplitude is uncertain.



42

For gently varying aspect tensor distributions, we find that
The amplitude correction factor (compared with the 
standard Gaussian formula) depends only upon the 
curvature diagnostic locally, and can be expressed as an 
asymptotic power series expansion.

This is the so-called PARAMETRIX EXPANSION
method.
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Parametrix Expansion Method

• Express the solution in “normal” 
coordinates as Gaussian*parametrix, T.

• Expand T(x,t) as a power series in normal 
coordinates, x,  and “time”, t

• Evaluate the t=1/2 solution to obtain the 
amplitude correction factor, T(0,1/2)
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The details of the parametrix method are highly technical, but the main
idea is that the amplitude correction factor is made to depend only upon
the CURVATURE and its higher derivatives. It does not depend upon the
local value of the metric (=aspect tensor) itself and the curvature comes 
the 2nd derivatives of this metric.

In the most general case, the “curvature” of a space is expressed as
a 4th rank tensor, the Riemann-Christoffel tensor.

In 3D, this tensor can be condensed down to the 2nd rank Ricci symmetric
tensor. In 2D, it further reduces to a scalar curvature, the Gaussian curvature
(which is one half of the Ricci scalar).
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Notation for curvature tensors

Rijkl Riemann-Christoffel

Rik = Rijk
j Ricci tensor

R   = Rk
k Ricci scalar

κ = (1/2)R = Gaussian curvature (2D only)   
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The parametrix expansion for the amplitude quotient to second order:

Further details can be found in:
Purser, R. J., Normalization of the diffusive filters that represent the inhomogeneous covariance 
operators of variational assimilation, using asymptotic expansions and techniques of non-Euclidean 
geometry; Part I: Analytic solutions for symmetrical configurations and the validation of practical
Algorithms. NOAA/NCEP Office Note 456, 48 pp.; Part II: Riemannian geometry and the generic
Parametrix expansion method. NOAA/NCEP Office Note 457, 55 pp.
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Remarks

The solution involves only curvature, and covariant 
derivatives of the curvature. See, for greater detail, 

Purser, R. J., 2008: Normalization of the diffusive filters that 
represent the inhomogeneous covariance operators of variational 
assimilation, using asymptotic expansions and techniques of non-
Euclidean geometry; Part I: Analytic solution for symmetrical 
configurations and the validation of practical algorithms. 
NOAA/NCEP Office Note 456; Part II: Riemannian geometry and the 
generic parametrix expansion method. NOAA/NCEP Office Note 
457.
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These graphs show the 2D results comparing the asymptotic expansion for 
the amplitude quotient with the true solution in the special case where the 
Gaussian curvature K is uniform. Even out to a curvature of +/- 5 non-
dimensional units, the asymptotic method with a few terms should give a very 
good approximation, as shown. However, the expansion is formally 
divergent. The true amplitude quotient is denoted “A”; other graphs show 
asymptotic expansions truncated to the degrees indicated by the superscript.
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Remarks (continued)

The parametrix method is an asymptotic expansion and,
as is typical of them, is of the divergent kind.

In practice, this means that the raw diagnostics “c” of 
curvature cannot be used. Instead, these diagnostics 
are “filtered” through the intermediary of a “saturation 
function”, S(c), which limits their values at large c.
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For example, having chosen the form of S, the practical
estimation of the amplitude factor, A, in the 1st-order
parametrix expansion in 2D would be something like:

A = 1 + κ0S(κ/κ0)/6

where κ0 is an empirical characteristic scaling value.
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The modified parametrix expansion for the amplitude
correction factor will typically give an amplitude in 
2D or 3D accurate to within about 5% when the 
variations of the aspect tensor are reasonably 
smooth.
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Discussion
The adoption of Riemannian geometry standardizes the
process by which covariance contributions are 
generated through quasi-diffusive processes.

Despite the apparent complication of dealing with an 
intrinsically curved geometry, the Riemannian 
formulation actually makes the estimation of amplitude 
easier and more accurate.
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By appropriate superpositions, non-Gaussian 
filters can be designed. 

This process is very similar to a form of (inverse)
discrete Laplace transformation.

The main difference being that the weights vary.

But real covariances aren’t Gaussians are they?
That’s true. 
The diffusive structures are:

Simple, 
Cheap, and 
Convenient.
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In principle, a wide variety of profiles can be synthesized
by the discrete superposition of quasi-Gaussian
“building blocks”.

Because we are primarily synthesizing C by this 
superposition, we guarantee that B = CCT is positive
semi-definite (good enough!) even when C itself is not.



56

Some fat-tailed Gaussian mixtures, and their Laplacians
(See Purser et al., 2003: Mon. Wea. Rev., 131, 1524—1548; 1536—1548.)
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The ability to generate superpositions efficiently depends upon us being
able to exploit the “Multigrid” method.

Coarse scales are primarily dealt with on a coarse grid, then later interpolated.
(The adjoint interpolator is used to get the input data onto these coarse grids –
the outcome of all the operations combined is then self-adjoint.)

The efficient generation of non-Gaussian filters opens up the possibility that
analysis error can be characterized by filters. The best way to do this is to
represent the information as the RATIO of background to analysis error.

In this form, the filters could also serve as very effective preconditioners in
The cost-function reduction process.
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Analysis error estimation and characterization.
Preconditioning

These topics are somewhat speculative at present and it may eventually 
turn out that the kinds of filters we have discussed are not adequate to 
characterize the analysis error structure. The problem is that, while it 
seems reasonable to represent a background error covariance in a way 
that implicitly assumes that, locally, it could be characterized simply by 
its power spectrum, the degree of spatial inhomogeneity in a typical 
analysis error covariance, so strongly dominated by equally 
inhomogeneous observations, make it seem unreasonable that the same 
kind of characterization of the analysis error covariance would work. 

However, even with its many imperfections, it would be at least 
informative to find out how well a filtering approach to representing 
analysis covariances might be made to work, once the necessary drastic 
simplifications in the measurement precision operators are made.
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In classical data assimilation theory, we understand the analysis precision 
to be simply the sum of the background precision and the measurement 
precision. If observations were spatially homogeneous, we could ascribe to 
them a local error power spectrum and obtain the corresponding analysis 
power spectrum fairly directly. 

We ask: with realistic observation distributions, can we usefully impose this 
assumption anyway, and obtain anything of value from the resulting 
analysis covariance? 

If so, filters might be useful for geographically smoothing a locally valid 
representation of each observation type’s   HTR-1H  operator to cause 
enough overlap among discretely distributed measurements of the same 
type to allow their measurement operators to look homogeneous locally 
and to make possible a local assessment of the density of such data. 
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For example, a scatter of point-observations of the analysis 
variable would then give (locally) a white-noise distribution for the 
measurement precision. A horizontal scatter of satellite radiance 
measurements would, however, result in a very different 
appearance for the vertical part of the local precision spectrum, 
with a bell-shaped peak concentrating the precision at only the 
small vertical wavenumbers (the squared-absolute magnitude of 
the Fourier transform of the “typical” transmittance function). Each 
of these two sets of data would have, locally, a different spectral 
impact on the analysis that could be estimated, and hence 
represented by a combination of filters.

If it is possible to obtain a reasonable model of the analysis error 
covariance in terms of a filter, then that same filter might be a 
useful preconditioner for the analysis itself.

Also, it would provide a valuable tool for normalizing the spread of 
ensemble members in a way that reflects the influence of new 
data, but sidesteps the expense of adding an assimilation to each 
ensemble component.
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I have described some of the “tricks” by which
recursive filters can generate plausible covariance
operators. (Some practical difficulties, and attempts
at their solution, are described in the second talk.)

Given the ability to generate inhomogeneous and
anisotropic covariance operators, how might we 
decide how to set the orientation and degree of
anisotropy and scale --- i.e., the “aspect tensor”?

One way is to modify an idea by Riishojgaard –
use variations in one (or several?) analysis 
variables to define additional effective dimensions 
of “distance”. Actually, a non-analysis variable will do.
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To illustrate the idea, we take the analysis domain to be
the two dimensions of surface analyzed data. (We
actually do this at NCEP – it is called the RTMA.)

Take the “variable” that adds an extra “dimension” to
be terrain height – but don’t be content with ordinary
Euclidean composition of horizontal and vertical
components to form effective distance – exaggerate
the vertical!

Then make the covariance locally isotropic in total
effective distance, and project it back into the 2D
analysis domain again. 
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Grow the topography around the Columbia river valley:

(Data provided by Manuel de Pondeca)
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Where the terrain is flat, a circular region projects back to a circle

Where terrain is sloping, a circular region projects back to an ellipse.
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This kind of terrain-based adaptation is actually done
in the RTMA. This inhibits analysis increments forced
by an observation at one altitude from strongly
influencing points that are horizontally nearby, but
which have very different altitudes.

But it does not have to be “altitude” that exerts this
control – it could be humidity, stream function,
potential temperature --- or all of the above! And
then the analysis need not be confined to two
dimensions either.
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(Figures prepared by Manuel de Pondeca)
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Using existing variables in the background field, or even
iterating to take them form the analysis, does not allow
our “effective metric” (aspect tensor) to incorporate
information about how well observed  and how dynamically
stable the atmosphere was that led to that background.

But that information should be implicitly contained in a
forecast ensemble. For example, from some ensemble
variable “P”:

gij = sample mean{ (grad P)i (grad P)j / P2 }
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Experiments carried out by Yoshiaki Sato et al.
deriving adaptive covariances from ensembles
using various methods (see NCEP Office Note 459).
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Summary
Multivariate background covariances can be decomposed
into quasi-independent “scalar” covariances.

Each scalar covariance, as an operator, can be simulated
by recursive filters.

Such filters are numerically efficient and seem to be
quite versatile – they allow both inhomogeneity and
anisotropy.

By superposition, non Gaussian profiles are possible.

We still need to learn to use them adaptively to improve
variational analyses and to exploit the ensemble data.
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