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Bayes Theorem – revision from lecture 2

Gaussian PDFs

Non-Gaussian observational errors - Quality Control

Thanks to Jim Purser who introduced me to the Bayesian approach.



© Crown copyright   Met Office  Andrew Lorenc  4

Bayes' Theorem for Discrete 
Events

A)|P(B P(A) = B)|P(A P(B) = B)P(A∩

P(B)
P(A) A)|P(B = B)|P(A

)A)P(A|P(B + A)P(A)|P(B = P(B)

A B events
P(A) probability of A occurring,  or

knowledge about A's past occurrence
P(A∩B) probability that A and B both occur,
P(A⏐B) conditional probability of A given B

We have two ways of expressing P(A∩B):

⇒ Bayes' Theorem:

Can calculate P(B) from:
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Quality Control example:
Bayesian Dice

Discrete Bayes Theorem Applied to Gross Observational Errors

I have two dice.  One is weighted towards throwing sixes.  I have performed 
some experiments with them, and have the prior statistics that:
for the weighted (W) die,P(6|W) = 58/60
for the good (G) die, P(6|G) = 10/60

I choose one at random: P(W) = P(G) = ½ = 50%
I throw this die, and it shows a six.  Now:-

P(6) = P(6|W) P(W) +P(6|G) P(G)
= 58/60    1/2   +  10/60   1/2

We can now apply Bayes' Theorem:
P(G|6) = P(6|G) P(G) / P(6)

= 10/60   1/2   / 34/60  =  5/34  = 15%
P(W|6) = P(6|W) P(W) / P(6)

= 58/60    1/2   / 34/60 = 29/34 = 85%
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Assume that a small fraction of the observations are corrupted, and hence 
worthless.   The others have Gaussian errors.  

For each observation we have:

G is the event "there is a gross error" and means not G.

Simple model for PDF of 
observations with errors
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Applying this model 

• Can simply apply Bayes Theorem to the discrete event G

Lorenc, A.C. and Hammon, O., 1988: "Objective quality control of observations using Bayesian methods. 
Theory, and a practical implementation." Quart. J. Roy. Met. Soc., 114, 515-543
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Posterior probability that an observation is 
“correct”, as a function of its deviation from 
the background forecast

Lorenc and Hammon, 1988



Met Office Bayesian DA

1. Prior experience sets P(G).
2. Background check (just described) modifies P(G).
3. Allows for independent gross error affecting whole report 

as well as in each reported element:

4. Sequential comparison of “buddies” modifies P(G):

5. Finally, reject if P(G)>0.5
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Lorenc & Hammon, 1988



© Crown copyright   Met Office  Andrew Lorenc  10

Applying this model 

• Can simply apply Bayes Theorem to the discrete event G

Lorenc, A.C. and Hammon, O., 1988: "Objective quality control of observations using Bayesian methods. 
Theory, and a practical implementation." Quart. J. Roy. Met. Soc., 114, 515-543

• Or we can use the non-Gaussian PDF directly

Ingleby, N.B., and Lorenc, A.C. 1993: "Bayesian quality control using multivariate normal distributions".  
Quart. J. Roy. Met. Soc., 119, 1195-1225
Andersson, Erik and Jarvinen, Heikki. 1999: "Variational Quality Control" Quart. J. Roy. Met. Soc., 125, 
697-722

( ) ( ) ( ) ( ) ( )GGGG Px|y + pPx|y = p|xyp ooo ∩∩



© Crown copyright   Met Office  Andrew Lorenc  11

Bayes theorem in continuous form, 
to estimate a value x given an observation yo

)yp(
x)p(x)|yp( = )y|p(x o

o
o

p(x⏐yo) is the posterior distribution,
p(x) is the prior distribution,
p(yo⏐x) is the likelihood function for x

Can get p(yo) by integrating over all x: x)p(x)dx|yp( = )yp( oo ∫
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Assume Gaussian pdfs
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Prior is Gaussian with mean xb, variance Vb : 

Ob yo, Gaussian about true value x variance Vo : 
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Substituting gives a Gaussian posterior: 
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Combination of Gaussian prior & observation
- Gaussian posterior,
- weights independent of values.

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(3,1)
posterior x ~ N(2.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(5,1)
posterior x ~ N(3.75,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(7,1)
posterior x ~ N(5.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(9,1)
posterior x ~ N(6.75,0.75)

Js
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Gaussian prior combined with observation 
with gross errors - extreme obs are rejected.

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(3,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(5,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(7,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(9,1) + 3%*0.02
posterior x

Js
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Variational Penalty Functions

• Finding the most probable posterior value involves 
maximising a product  [of Gaussians]

• By taking –ln of the posterior PDF, we can instead 
minimise a sum    [of quadratics]

• This is often called the “Penalty Function”  J

• Additive constants can be ignored
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Penalty functions: J(x) = -ln(p(x))+c
p Gaussian ⇒ J quadratic

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(3,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(5,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(7,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(9,1)
J(x) = Jb(x) + Jo(x)

J

PDFs
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Penalty functions: J(x) = -ln(p(x))+c
p non-Gaussian ⇒ J non-quadratic

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x).       p(yo|x)~97%*N(3,1)+3%*0.02
J(x) = Jb(x) + Jo(x)

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x).       p(yo|x)~97%*N(5,1)+3%*0.02
J(x) = Jb(x) + Jo(x)

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x).       p(yo|x)~97%*N(7,1)+3%*0.02
J(x) = Jb(x) + Jo(x)

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x).       p(yo|x)~97%*N(9,1)+3%*0.02
J(x) = Jb(x) + Jo(x)

PDFs



Importance of prior statistics 
on observation errors

• The Bayesian approach does more than assess the 
probability of the observed value being correct; it needs also 
prior estimates of the characteristics of erroneous 
observations.

• To avoid more accurate (e.g. weather ship) observations 
being more likely to be rejected, we need to allow for them 
being more reliable too.

• Testing for different sources of error can lead to logically 
complex, often built on speculative foundations – these are 
usually only worthwhile if extra information is available  (e.g. 
radiosonde internal consistency, cloud affected radiances, 
track check for ships & aircraft, …).



Importance of prior statistics 
on background

• Usually the most important information source for checking 
observations is the background forecast.  Assuming this has 
Gaussian errors gives a rather sharp rejection criterion.

• Actual background error variances are flow dependent.        
If we do not allow for this, good observations can be 
erroneously rejected in high-impact weather events.

• Can estimate flow dependent background error variances
• from simple pattern recognition & regression (Parrett 1992);
• from EnKF;
• from misfit of all observations in an area (Dee et al. 2001).



QC of “buddy” observations 
interacts.

• Supportive “buddies” may retain correct observations which would be 
rejected individually.

• But an observation with a gross error can throw suspicion on nearby 
good observations.

• It is perhaps better to calculate posterior probability of every combination 
of reject/accept (Ingleby & Lorenc 1993).  But this is impracticable for 
more than a few observations.

• Preliminary checks, plus re-doing QC based on preliminary decisions, 
can work (Lorenc 1981, Lorenc & Hammon 1988).

• It is attractive to combine this with other DA iterations, especially in 
variational methods.



Complexity of ideal buddy check for 
only 2 observations.   Ingleby & Lorenc 1993.

• N observation give 2N combinations,  shown for {-6, -8}, with P(G)=0.04, as thin 
lines on the figure and entries in the table.

• Accepting both observations is best Simultaneous QC result, but sequential 
one-by-one re-checking cannot find this.

• Individual QC accepts #1 and rejects #2 – not a likely combination.
• Most probable value, goal of Variational QC, is near SQC, but simple descent 

algorithm cannot find this.



Non-Gaussian DA.
The need for QC of observations depends on 
the use being made of them.

• All observations can be plotted for human analysis – an 
experienced forecaster will allow for errors while drawing up 
weather chart.

• In contrast, “Objective” verification statistics are very 
sensitive to QC of verifying observations.

• Gaussian-based (least-squares) analysis methods have 
fairly clear requirements to reject observations which do not 
fit the Gaussian hypothesis.

• Non-Gaussian methods can allow directly for error 
properties, making a separate QC step unnecessary.



Accounting for a range of error characteristics 
– not just the possibility of gross error.

• Situation dependent observational errors.

• Situation dependent bias.

• Observations a nonlinear function of model variables.

• Surface wind speed.

• Scatterometer wind aliases.

• Cloud and precipitation.

Variational methods can be developed to address all of these 
simultaneously as part of the core variational algorithm.
Otherwise, we develop specific stand-alone algorithms.



L1 norm is robust to outliers

obs L2 fit L1 fit

Best fit straight lines to data including a gross error: solid line using a 
quadratic (L2) norm, dotted line using a mean absolute (L1) norm. 
(Based on Tarantola 1987).
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Lorenc, A. C., 2002: Atmospheric Data Assimilation and 
Quality Control.  Ocean Forecasting, eds Pinardi & Woods.  
ISBN 3 540 67964 2 73 96

What answer do we want?

• If we can afford to represent it 
(eg by an ensemble) then the full 
posterior PDF carries all the 
information.

• Normally we can only cope with 
a single “best” estimate.

• Can only find best w.r.t. a “loss 
function” specifying how much 
we lose for a wrong estimate.  
Lorenc (2002) suggested using 
a Gaussian-shaped function:

• a very narrow “delta-function” 
finds the mode X, ;

• a very broad (quadratic) function 
finds the mean ;

• can argue for a width similar to 
the background PDF’s; this finds 
the mean of the largest peak +.



Coping with multiply minima –
finding best combination of inter-related decisions.

• Do a preliminary “pass” [with larger scale] before performing 
QC.

• Start with inflated observational errors, decreasing to correct 
values during the iteration (Dharssi et al. 1992)

• Only switch on variational QC after N (~20) iterations.

• Rely mainly on QC v background forecast (which is 
assumed to have Gaussian errors).

• Design iterative “buddy check” algorithm to start with easiest 
decisions.

• Change to robust DA algorithm (e.g. Huber norm).



Models for Observation Error 
PDFs

• Gaussian + “null” prior.  
Simple. Assumes that erroneous observations do not add to prior 
knowledge.  Used in most of my QC work.  Problems normalising – does not 
integrate to 1.  Gives multiple minima.

• Gaussian + wider Gaussian.  
Similar in practice to above.  Normalised.  Erroneous obs make small 
change to prior. Gives multiple minima.

• Back to back exponentials.  
Implied by use of L1 norm (Tarantola 1987).  Finds median – “pull” of all 
observations is equal.  Not differentiable at origin, so difficult to minimise.  
Robust.

• Huber Norm.  
Huber (1973), Guitton and Symes (2003).  Used at ECMWF.  L2 for small 
deviations, L1 for large.  Finds consensus average - “pull” of observations 
limited, rather than increasing indefinitely with misfit.  Robust.



Huber Norm

© Crown copyright   Met Office  Andrew Lorenc  28

Erik Andersson



Different “best” values from the posterior 
PDF, plotted against ob-background.
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Minimum of single observation penalty 
function for various observation norms
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Observation Monitoring

• It is surprisingly difficult to demonstrate consistent significant 
impact from QC of individual observations!

• “Monitoring” is probably more important – collection of 
statistics on the performance of observing and processing 
systems, detection of systems not performing as expected, 
& feedback so the deficiency is corrected.  Needs:

• a comprehensive database of basic and processed observed values, 
independent estimates of the same quantities, and parameters 
affecting the processing (recently enhanced by “adjoint sensitivities”);

• software for categorising, sorting, and analysing the database;
• effort to try categorisations and look for "unexpected" behaviour;
• communications, willpower and persistence, to get errors from stages 

out of your direct control rectified. 
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Aside: Nonlinearities in
Outer-loop statistical 4D-Var

Thanks to Jim Purser who introduced me to the Bayesian approach.
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Statistical, incremental 4D-Var

Statistical 4D-Var approximates entire PDF by a Gaussian.
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Perturbation Forecast model for 
Incremental 4D-Var

(RHtotal-1)/(1-RHcrit)

• Minimise:

• Designed to give 
best fit for finite 
perturbations

• Not Tangent-Linear

• Filters unpredictable 
scales and rounds IF 
tests

• Requires physical 
insight – not just 
automatic 
differentiation

Tim Payne

( ) ( ) ( ){ }I E M Mδ δ= + − −x x x M x x%

cloud fraction
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What spread to assume in 
regularisation?

• If guess=background, 
need to approximate 
whole of PDFf

• In final outer-loop, only 
need to approximate PDFa

              Observation

y o=(x
1 +x

2 )/2
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Questions and answers
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