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A Bayesian view of Data 
Assimilation

JCSDA Summer School.
Andrew Lorenc, Stevenson WA. July 2009.

Thanks to Jim Purser who introduced me to the Bayesian approach.
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Content

1. Bayes Theorem – adding information

• Gaussian PDFs

2. Simplest possible Bayesian NWP analysis
• Two gridpoints, one observation.

3. Issues in practical implementation
• Modelling/representing prior background error covariances B
• Solving the large matrix equation
• Estimating B.

4. Predicting the prior PDF
• a Bayesian view of 4D-Var v Ensemble KF
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Bayes Theorem – adding information

Gaussian PDFs

(Non-Gaussian observational errors - Quality Control will be covered in another lecture.)
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Bayes' Theorem for Discrete Events

A)|P(B P(A) = B)|P(A P(B) = B)P(A∩

P(B)
P(A) A)|P(B = B)|P(A

)A)P(A|P(B + A)P(A)|P(B = P(B)

A B events
P(A) probability of A occurring,  or

knowledge about A's past occurrence
P(A∩B) probability that A and B both occur,
P(A⏐B) conditional probability of A given B

We have two ways of expressing P(A∩B):

⇒ Bayes' Theorem:

Can calculate P(B) from:
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Bayes theorem in continuous form, 
to estimate a value x given an observation yo

)yp(
x)p(x)|yp( = )y|p(x o

o
o

p(x⏐yo) is the posterior distribution,
p(x) is the prior distribution,
p(yo⏐x) is the likelihood function for x

Can get p(yo) by integrating over all x: x)p(x)dx|yp( = )yp( oo ∫
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Assume Gaussian pdfs
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Prior is Gaussian with mean xb, variance Vb : 

Ob yo, Gaussian about true value x variance Vo : 
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Substituting gives a Gaussian posterior: 
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Advantages of Gaussian 
assumption

1. Best estimate is a found by solving linear equations:

Taking logs gives quadratic equation; differentiating to find extremum gives linear equation.

2. Best estimate is a function of values & [co-]variances only.
Often these are all we know.

3. Weights are independent of values.
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Combination of Gaussian prior & observation
- Gaussian posterior,
- weights independent of values.

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(3,1)
posterior x ~ N(2.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(5,1)
posterior x ~ N(3.75,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(7,1)
posterior x ~ N(5.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(9,1)
posterior x ~ N(6.75,0.75)

Js
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Variational Penalty Functions

• Finding the most probable posterior value involves 
maximising a product  [of Gaussians]

• By taking –ln of the posterior PDF, we can instead 
minimise a sum    [of quadratics]

• This is often called the “Penalty Function”  J

• Additive constants can be ignored
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Penalty functions: J(x) = -ln(p(x))+c
p Gaussian ⇒ J quadratic

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(3,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(5,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(7,1)
J(x) = Jb(x) + Jo(x)

J

Jb(x)=-ln(p(x))+c.  x ~ N(0,3)
Jo(x)=-ln(p(yo|x))+c.  p(yo|x) ~ N(9,1)
J(x) = Jb(x) + Jo(x)

J

PDFs
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Simplest possible Bayesian NWP 
analysis
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Simplest possible example – 2 grid-points, 
1 observation.   Standard notation:
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Model is two grid points:

1 observed value yo midway (but use notation for >1): 

Can interpolate an estimate y of the observed value:

This example H is linear, so 
we can use matrix notation for 
fields as well as increments.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A.C. 1997: "Unified notation for data 
assimilation: Operational, Sequential and Variational" J. Met. Soc. Japan, 
Special issue "Data Assimilation in Meteorology and Oceanography: Theory 
and Practice." 75, No. 1B, 181—189 
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background pdf
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We have prior estimate 
xb

1 with error variance Vb:

But errors in x1 and x2 are usually correlated
⇒ must use a multi-dimensional Gaussian:

where B is the covariance matrix:
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background pdf
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Observational errors
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error of representativeness

Observational error
combines these 2 :

Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction." 
Quart. J. Roy. Met. Soc., 112, 1177-1194.
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background pdf
obs likelihood function
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Bayesian analysis equation
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Property of Gaussians that, if H is linearisable : 

where xa and A are defined by:
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background pdf
obs likelihood function
posterior analysis PDF
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Analysis equation
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For our simple example the algebra is easily done by hand, 
without manipulating matrices, giving: 
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Practical implementation of the 
Bayesian Analysis Equation
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Issues in practical implementation
“The devil is in the details”

There are significantly different choices possible for each of 
the following options.  The combinations of these choices 
make up a very wide range and large number of analysis 
schemes, all implementing the same Bayesian equation!

• Modelling and representing prior background 
error covariances B.

• Expressing the equations in a form amenable to 
solution.

• Computing the solution.
• Estimating B.



Michael Ghil on OI & Kalman Filter
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Modelling and representing prior 
background error covariances B.

• Explicit point-point [multivariate] covariance functions.

• Transformed control variables to deal with inter-variable 
covariances.

• Vertical – horizontal split

• EOF decomposition into modes.

• Spectral decomposition into waves.

• Wavelets.

• Recursive filters or diffusion operators to give local 
variations.

• Ensemble members.
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Schlatter’s (1975) multivariate 
covariances



Transformed control variable.

• Look for a “balanced” variable from 
which we can calculate balanced flow in 
all variables: streamfunction, PV.

• Define transforms from (U) or to (T) this 
variable and a residual variable, which 
by construction/hypothesis is 
uncorrelated making B block diagonal.  
(Compare EOFs)

• Transformed variables still need spatial 
covariance model, but not multivariate.  
(Further transforms may be used to 
represent these.)
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Comparison of covariance models

Correction to p based on a u observation at same level

3D-Var 4D-Var Ensemble KF

Adam Clayton

3D-Var 4D-Var Ensemble KF

Correction to θ based on a u observation at same level
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Equations - all equivalent.

• Variational

• Kalman Filter. Kalman Gain=K.

• Observation space

• Model space

• Ensemble space Square-root Filters, e.g. ETKF

Demonstrate equivalence using Sherman–Morrison–Woodbury formula



Estimating PDFs or 
covariances

• Even if we knew the “truth”, we could never run enough 
experiments in the lifetime of an NWP system to estimate its 
error PDF, or even its error covariance B.

• Simplifying assumptions are essential (e.g. Gaussian, ...)

• Even a simplified error model has so many parameters that we 
cannot determine them by NWP trials to determine which give 
the best forecasts.

• In practice we can only measure innovations – cannot get 
separate estimates of B & R without assumptions (Talagrand).

• Need to understand physics!
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How to estimate the prior PDF?
How to calculate its time evolution?

i.e.  4D-Var versus Ensemble KF
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Fokker-Planck Equation

Ensemble methods attempt to sample entire PDF.



© Crown copyright   Met Office

Gaussian Probability 
Distribution Functions

• Easier to fit to sampled errors.

• Quadratic optimisation problems, with linear solution 
methods – much more efficient.

• The Kalman filter is optimal for linear models, but 
• it is not affordable for expensive models (despite the “easy” 

quadratic problem) 
• it is not optimal for nonlinear models.

• Advanced methods based on the Kalman filter can 
be made affordable:

• Ensemble Kalman filter (EnKF, ETKF, ...)

• Four-dimensional variational assimilation (4D-Var)



Extended Kalman Filter
x
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Ensemble Kalman filter

Fit Gaussian to forecast ensemble.
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EnKF

=

=

=
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Deterministic 4D-Var

Initial PDF is approximated by a Gaussian.

Descent algorithm only explores a small part of the PDF, 
on the way to a local minimum.
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Simple 4D-Var, as a least-squares best fit of a 
deterministic model trajectory to observations
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Assumptions in deriving 
deterministic 4D-Var

Bayes Theorem - posterior PDF:

where the obs likelihood 
function is given by:

Impossible to evaluate the 
integrals necessary to find 
“best”.  

Instead assume best x
maximises PDF, and 
minimises -ln(PDF):

Purser, R.J. 1984: "A new approach to the optimal assimilation of meteorological data by iterative Bayesian analysis". 
Preprints, 10th conference on weather forecasting and analysis. Am Met Soc. 102-105
Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction." Quart. J. Roy. Met. Soc., 112, 1177-1194.
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The deterministic 4D-Var equations
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Bayesian posterior pdf.

Assume 
Gaussians

But nonlinear model makes pdf non-Gaussian: 
full pdf is too complicated to be allowed for.

So seek mode of pdf by 
finding minimum of 
penalty function
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Statistical, incremental 4D-Var

Statistical 4D-Var approximates entire PDF by a Gaussian.
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Statistical 4D-Var  - equations
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Independent, Gaussian 
background and model 
errors ⇒ non-Gaussian pdf 
for general y:

Incremental linear approximations 
in forecasting model predictions of 
observed values converts this to 
an approximate Gaussian pdf:

The mean of this approximate pdf 
is identical to the mode, so it can 
be found by minimising:
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Questions and answers
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