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Ensemble Kalman Filter:Ensemble Kalman Filter:
status and new ideasstatus and new ideas

• EnKF and 4D-Var are in a friendly competition:
• Jeff Whitaker results: EnKF better than GSI (3D-Var)
• Canada (Buehner): 4D-Var & EnKF the same in the
NH and EnKF is better in the SH. Hybrid best.
• JMA (Miyoshi): at JMA, EnKF faster than 4D-Var,
better in tropics and NH, worse in SH due to model bias.
• EnKF needs no adjoint model, priors, it adapts to
changes in obs, it can even estimate ob errors.
• We “plagiarized” ideas and methods developed for 4D-
Var and adapted them to the LETKF (Hunt et al., 2007)
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Intercomparison of variational, EnKF, and ensemble-
4D-Var data assimilation approaches in the context of

deterministic NWP

From Seminar at NCEP/EMC
June 9, 2009

See also “4D-Var vs. EnKF”
Workshop in Buenos Aires

Google “4D-Var EnKF”

Project Team:
Mark Buehner

Cecilien Charette
Bin He

Peter Houtekamer
Herschel Mitchell

Mark Buehner
Data Assimilation and Satellite Meteorology Section

Meteorological Research Division
Environment Canada
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• radiosonde
temperature
observation at
500hPa

• observation at
middle of
assimilation
window (+0h)

• with same B,
increments very
similar from
4D-Var, EnKF

• contours are
500hPa GZ
background
state at 0h
(ci=10m)

Single observation experiments
Difference in temporal covariance evolution

contour plots at 500 hPa
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Forecast Results:
EnKF (ens mean) vs. 4D-Var-Bnmc

Difference in
stddev relative
to radiosondes:

Positive  
EnKF better

Negative 
4D-Var-Bnmc better

zonal
wind

temp.

height

north              tropics             south

EnKF comparableEnKF comparable
to operationalto operational
4D-Var4D-Var

Mark Buehner
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Forecast Results (Hybrid):
4D-Var-Benkf vs. 4D-Var-Bnmc

Difference in
stddev relative
to radiosondes:

Positive  
4D-Var-Benkf better

Negative 
4D-Var-Bnmc better

zonal
wind

temp.

height

north              tropics             south

Hybrid better thanHybrid better than
operational 4D-Varoperational 4D-Var

Mark Buehner
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Results – 500hPa GZ anomaly
correlation

Verifying analyses from 4D-Var with Bnmc

Northern extra-tropics Southern extra-tropics

                                                    

4D-Var Bnmc
4D-Var Benkf
EnKF (ens mean)

4D-Var Bnmc
4D-Var Benkf
EnKF (ens mean)

Mark Buehner SORRY THAT THIS FIGURE MAY 
APPEAR ROTATED BY MICROSOFT!!!
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threshold (mm)

Equitable Threat Score
for Tropics

EnKF (ens mean)
4D-Var-Bnmc

4D-Var-Benkf
4D-Var-Bnmc

Forecast Results – Precipitation
24-hour accumulation verified against GPCP analyses

day 1                    day 2                      day 3

Hybrid better than
operational 4D-Var

EnKF better than
operational 4D-Var

Mark Buehner
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Evolution of mean 3-hour accumulated precipitation

Forecast Results – Precipitation

EnKF has tropical spinup

Mark Buehner
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Whitaker: Comparison of T190, 64 members EnKF with
T382 operational GSI, same observations (JCSDA, 2009)
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Conclusions from a clean comparison ofConclusions from a clean comparison of
GSI and EnKF (Whitaker, 2009)GSI and EnKF (Whitaker, 2009)

  At T190/L64 resolution - 64 members - EnKF is better than theAt T190/L64 resolution - 64 members - EnKF is better than the
operational GSI (at T382/L64)operational GSI (at T382/L64)
  It is computationally competitive with 3D-Var if the forecastIt is computationally competitive with 3D-Var if the forecast
costs are covered by the operational ensemble requirementcosts are covered by the operational ensemble requirement

Conclusions from a clean comparison ofConclusions from a clean comparison of
JMA 4D-Var and LETKF (Miyoshi et al. 08)JMA 4D-Var and LETKF (Miyoshi et al. 08)
  At the same resolution LETKF is At the same resolution LETKF is fasterfaster than the operational than the operational
4D-Var, 4D-Var, betterbetter in the tropics and NH,  in the tropics and NH, worseworse in SH in SH  due to a modeldue to a model
biasbias
  Plan to test simple low-dim method to correct model biasPlan to test simple low-dim method to correct model bias
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There are several types of EnKFThere are several types of EnKF

1.1. Perturbed obs (e.g., Houtekamer and Mitchell)Perturbed obs (e.g., Houtekamer and Mitchell)
2.2. Square root filters (e.g., Whitaker and Hamill)Square root filters (e.g., Whitaker and Hamill)
Most filters get their speed from assimilating one

observation at a time
The LETKF (Hunt 2005) assimilates all obs

simultaneously and get its speed from local
processing of each grid point

Because it is a Transform Square root filter, the LETKF
analysis ensemble is explicitly expressed as a linear
combination of the forecast ensemble

This has a number of nice properties, so here we will
focus on the LETKF
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Diagnostic tools that improveDiagnostic tools that improve
LETKF/EnKFLETKF/EnKF

We adapted ideas that were inspired by 4D-VarWe adapted ideas that were inspired by 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
  “Outer loop”, nonlinearities and long windows (Yang and Kalnay)
 Accelerating the spin-up (Kalnay and Yang, 2008)
 Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)
 Analysis sensitivity to observations and cross-validation (Liu et al., QJ,
2009)
 Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
 Low-dimensional model bias correction (Li et al., MWR, 2009)
 Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).
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Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel: fast
• No adjoint needed
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
Outer loop (like in 4D-Var)
“Running in place” (faster spin-up)
Use of future data in reanalysis
Ability to use longer windows
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No-cost LETKF smoother
tested on a QG model: It works!

“Smoother” reanalysis

LETKF Analysis
xn
a
= xn

f
+ Xn

f
wn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  

!xn!1
a

= xn!1
f

+ Xn!1

f
wn

a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the t have the outer loopouter loop  so important in 3D-Var andso important in 3D-Var and
4D-Var (DaSilva, pers. 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var  LETKF
Window=8 steps 0.31    0.30 (linear window)
Window=25 steps 0.53    0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var clearly wins!
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““Outer loopOuter loop”” in 4D-Var in 4D-Var
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Nonlinearities,Nonlinearities,  ““Outer LoopOuter Loop”” and  and ““Running in PlaceRunning in Place””

Outer loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
        +outer loop       +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39

“Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times…
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““Running in PlaceRunning in Place””: like the outer loop: like the outer loop
but updating also thebut updating also the  covariancecovariance

Cold-start the EnKF from any initial ensemble mean and random perturbations at t0, and integrate
the initial ensemble to t1. The “running in place” loop with n=1, is:
a) Perform a standard EnKF analysis and obtain the analysis weights at tn, saving the mean
square observations minus forecast (OMF) computed by the EnKF.
b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at  tn-1 by using the
same weights obtained at tn.
c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian
perturbations, similar to additive inflation.
d) Integrate the perturbed smoothed ensemble to tn. If the forecast fit to the observations is
smaller than in the previous iteration according to some criterion, go to a) and perform another
iteration. If not, let                and proceed to the next assimilation window.

t
n!1

" t
n
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Running in Place algorithm (notes)Running in Place algorithm (notes)
Notes:
c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian

perturbations, a method similar to additive inflation.
This perturbation has two purposes:
1) Avoid reaching the same analysis as before, and
2) Encourage the ensemble to explore new unstable directions

d) Convergence criterion: if
with                  do another iteration. Otherwise go to the next assimilation window.

and keep the number of iterations low OMF
2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> "

 ! ! 5%
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Results with a QG modelResults with a QG model

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It
becomes as fast as 4D-Var (blue). RIP takes only 2-4 iterations.
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Results with a QG modelResults with a QG model

LETKF spin-up from random perturbations: 141 cycles.  With RIP: 46 cycles
LETKF spin-up from 3D-Var perts. 54 cycles.  With RIP: 37 cycles
4D-Var spin-up using 3D-Var prior: 54 cycles.
RIPRIP  is robust, with or without prior informationis robust, with or without prior information

 LETKF  

Random initial ensemble  

LETKF 

B3DV initial ensemble 

LETKF, 

Random initial 

ensemble 

Variational 

 

 

No RIP With RIP  No RIP With RIP  
Fixed 10 

iterations RIP 

3D-Var 

B3DV 

4D-Var 

0.05B3DV 

Spin-up: 

DA cycles 

to reach 

5% error 

141 46 54 37 37 44 54 

RMS error 

(x10
-2

) 
0.5 0.54 0.5 0.52 1.16 1.24 0.54 
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• In EnKF the analysis is a weighted average of the forecast ensemble
• We performed experiments with a QG model interpolating weights

compared to analysis increments.
• Coarse grids of 11%, 4% and 2% interpolated analysis points.
• Weight fields vary on large scales: they interpolate very well

 

1/(3x3)=11% analysis grid

Coarse analysis with interpolated weights
Yang et al (2008)
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Weight interpolation versus Increment interpolation

With increment interpolation, the analysis degrades quickly…
With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties

 



29

Impact of coarse analysis on accuracy

With increment interpolation, the analysis degrades
With weight interpolation, there is no degradation,

the analysis is actually slightly better!
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Model error: comparison ofModel error: comparison of  methodsmethods
to correct model bias and inflationto correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay, MWR (2009)

Inspired by the work of Dick Dee, but with model
errors estimated in model space, not in obs space
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Model error: If we assume a perfect model in EnKF,Model error: If we assume a perfect model in EnKF,
we underestimate the analysis errors (Li, 2007)we underestimate the analysis errors (Li, 2007)

imperfect modelimperfect model
(obs from NCEP- NCAR(obs from NCEP- NCAR
Reanalysis NNR)Reanalysis NNR)

perfect SPEEDY modelperfect SPEEDY model
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— Why is EnKF vulnerable to model errors ?

 In the theory of Extended Kalman
filter, forecast error is represented by
the growth of errors in IC and the
model errors.

 However, in ensemble Kalman filter,
error estimated by the ensemble
spread can only represent the first
type of errors.
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• Generate a long time series of model forecast minus reanalysis
from the training period

2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

t=0
t=6hr

model

fx

x
truth

Bias removal schemes (Low Dimensional Method)

e

hr
x
6

We collect a large number of estimated errors   and estimate from them bias, etc.
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Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

Having a large number of estimated errors   allows to
estimate the global model error beyond the bias
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SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

•  For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
diurnal cycle errors because it lacks diurnal
radiation forcing

Leading EOFs for 925 mb TEMP

pc1
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imperfect model
perfect model

Low Dimensional Method to correct the bias (Danforth et al, 2007)
combined with additive inflation

We compared several methods to handle
bias and random model errors
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Simultaneous estimation of EnKF inflation and
obs errors in the presence of model errors

Hong Li, Miyoshi and Kalnay (QJ, 2009)

 Any data assimilation scheme requires accurate statistics for the
observation and background errors (usually tuned or from gut feeling).
 EnKF needs inflation of the background error covariance: tuning is
expensive
 Wang and Bishop (2003) and Miyoshi (2005) proposed a technique to
estimate the covariance inflation parameter online. It works well if ob errors
are accurate.
 We introduce a method to simultaneously estimate ob errors and
inflation.

Inspired by Houtekamer et al. (2001) and
Desroziers et al. (2005)
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Diagnosis of observation error statistics
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Diagnosis of observation error statistics

Here we use a simple KF to estimate both     and       online.!
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SPEEDY model: online estimated observational
errors, each variable started with 2 not 1.

The original wrongly specified R quickly
converges to the correct value of R (in about 5-10
days)
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Estimation of the inflation

Using a perfect R and estimating      adaptively
Using an initially wrong R and       but estimating them adaptively!

 

Estimated Inflation

!

After R converges, the time dependent inflation factors are quite similar 
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Tests with LETKF with imperfect L40 model:
added random errors to the model

 

Error 

amplitude 

(random) 

A: true !
o

2
=1.0  

(tuned) constant "  

 

B: true !
o

2
=1.0  

  adaptive "  

  

 C:  adaptive!
o

2
  

     adaptive "  

 

a   "   RMSE  "  RMSE "   RMSE !
o

2
 

4 0.25 0.36 0.27 0.36 0.39 0.38 0.93 

20 0.45   0.47 0.41 0.47 0.38 0.48 1.02 

100 1.00 0.64 0.87 0.64 0.80 0.64 1.05 

 

The method works quite well even
with very large random errors!
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Tests with LETKF with imperfect L40 model:
added biases to the model

The method works well for  low biases, but
less well for large biases: Model bias needs

to be accounted by a separate bias correction

Error 

amplitude 

(bias) 

A: true !
o

2
=1.0  

(tuned) constant "  

 

B: true!
o

2
=1.0  

  adaptive "  

  

 C:  adaptive!
o

2
  

     adaptive "  

 

#   "   RMSE  "  RMSE "   RMSE !
o

2
 

1 0.35  0.40 0.31 0.42 0.35 0.41 0.96 

4 1.00  0.59 0.78 0.61 0.77 0.61 1.01 

7 1.50 0.68 1.11 0.71 0.81 0.80 1.36 
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SummarySummary

• EnKF and 4D-Var give similar results in Canada and in JMA,
except for model bias. (Buehner et al, Miyoshi et al)

• EnKF is better than GSI with half resolution model, 64
members. Computationally competitive (Whitaker)

• Many ideas to further improve EnKF were inspired in 4D-Var:
– No-cost smoothing and “running in place”
– A simple outer loop to deal with nonlinearities
– Adjoint forecast sensitivity without adjoint model
– Analysis sensitivity and exact cross-validation
– Coarse resolution analysis without degradation
– Correction of model bias combined with additive inflation gives the

best results
– Can estimate simultaneously optimal inflation and obs. errors
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MiyoshiMiyoshi’’s LETKF codes LETKF code

Takemasa Miyoshi has a wonderful new LETKF code based on the work
he did at JMA. He has made it available to all at “Google code
Miyoshi LETKF”.

It is MPI (parallel) modular and very efficient, and the same code has been
coupled to Lorenz (1996), SPEEDY and the Regional Ocean Modular
System (ROMS) at high resolution.

Let me know if you need more information: you could run Lorenz-96 in a
few minutes.
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Thoughts on hybridThoughts on hybrid

Dale Barker suggested that a fast path for NCEP to the use of hybrid would be to
make first a GSI-EnKF hybrid, and then replace GSI with 4D-Var. Seems a
very sensible idea.

As shown by Buehner et al., hybrid Var and EnKF may be the most accurate
approach (“sweet spot”).

RMS error

a=0 a=1

x x4D-Var EnKF

Hybrid=a*EnKF+(1-a)*4D-Var
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Final thoughtsFinal thoughts

• EnKF is relatively new, but it has been shown
to be better than 3D-Var and comparable to
4D-Var.

• It is simple to program and maintain: no LTM,
no adjoint, no background error covariance,
adapts to changes in observing systems.

• Ideally the tuning parameters (inflation and
obs. errors, and localization) will be estimated
adaptively. Miyoshi developed adaptive
localization.

• Applications and properties of 4D-Var can be
easily adapted to EnKF.


