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Sounding Theory Notes for the 
discussion today is on-line

voice: (301)-316-5011               email: chris.barnet@noaa.gov
ftp site: ftp://ftp.orbit.nesdis.noaa.gov/pub/smcd/spb/cbarnet/
..or..   ftp ftp.orbit.nesdis.noaa.gov, cd pub/smcd/spb/cbarnet

Sounding NOTES, used in teaching UMBC PHYS-741: Remote Sounding 
and UMBC PHYS-640: Computational Physics (w/section on Least Square 
Fitting and Instrument Apodization)

~/reference/rs_notes.pdf
~/reference/phys640_s04.pdf

These are living notes, or maybe a scrapbook – they are not textbooks.

An excellent text book on the topic of remote sounding is:

Rodgers, C.D. 2000.  Inverse methods for atmospheric 
sounding: Theory and practice.  World Scientific Publishing 
238 pgs
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Acronyms

• Infrared Instruments
– AIRS = Atmospheric Infrared Sounder
– IASI = Infrared Atmospheric Sounding 

Interferometer
– CrIS = Cross-track Infrared Sounder
– HES = Hyperspectral Environmental Suite

• Microwave Instruments
– AMSU = Advanced Microwave Sounding Unit
– HSB = Humidity Sounder Brazil
– MHS = Microwave Humidity Sensor
– ATMS = Advanced Technology Microwave 

Sounder
– AMSR = Advanced Microwave Scanning 

Radiometer
• Imaging and Cloud Instruments

– MODIS = MODerate resolution Imaging 
Spectroradiometer

– AVHRR = Advanced Very High Resolution 
Radiometer

– VIIRS = Visible/IR Imaging Radiometer Suite
– ABI = Advanced Baseline Imager
– CALIPSO = Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observations

• Other
– EUMETSAT = EUropean organization for 

exploitation of METeorological SATellites
– FOV/FOR = field of view or regard
– GOES = Geostationary Environmental 

Operational Satellite
– IGCO = International Global Carbon 

Observation (theme within IGOS)
– IGOS = Integrated Global Observing System
– IPCC = Inter-government Panel on Climate 

Change 
– METOP = METeorological Observing 

Platform
– NESDIS = National Environmental Satellite, 

Data, and Information Service
– NPOESS = National Polar-orbiting 

Operational Environmental Satellite System
– NDE = NPOESS Data Exploitation
– NPP = NPOESS Preparatory Project
– OCO = Orbiting Carbon Observatory
– STAR = office of SaTellite Applications and 

Research
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Topics for this lecture
• Introduction to hyper-spectral infrared instruments

– Atmospheric Infrared Sounder, AIRS
– Infrared Atmospheric Sounding Interferometer, IASI
– Cross-track Infrared Sounder, CrIS

• Examples of infrared products
– Trade-off between using radiance versus retrieval products.

• Examples of infrared spectra.
– Information content of infrared hyper-spectral spectrum.

• AIRS science team algorithm
– Statistical regression
– Cloud clearing
– Unconstrained retrievals (least squares fitting)
– Physical retrieval.

• Side-bar #1 (if time allows) Vertical averaging functions.

• Side-bar #2: (if time allows) Comparison of dispersive and 
interferometric instruments.
– Apodization
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AIRS, AMSU, & MODIS were launched on 
the EOS Aqua Platform May 4, 2002

AIRS

HSB

AMSU-A1(3-15)

AMSU-A2(1-2)

Delta II 7920

MODIS

Aqua Acquires 325 Gb of data per day
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AIRS has a Unique Opportunity to Explore & Test New 
Algorithms for Future Operational Sounder Missions.

5/4/2002

2/24/2009
(failed)

12/18/2004

7/15/2004

Apr. 28, 2006
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IASI was launched on the MetOp-A 
Satellite on Oct. 19, 2006  

Soyuz 2/Fregat launcher,

Baikonur, Kazakhstan

IASI

MHS

AMSU-A1

AMSU-A2
ASCAT

HIRS AVHRR
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Initial Joint Polar System is a NOAA & EUMETSAT 
agreement to exchange all data and products.

NASA/Aqua
1:30 pm orbit (May 4, 2002)

NPP & NPOESS
1:30 pm orbit
(2011, 2014, 2020)

EUMETSAT/METOP-A
9:30 am orbit (Oct. 19, 2006, 
2012, 2017)

20 years of hyperspectral sounders are 
already funded for weather applications
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In thermal infrared we use wavenumbers 
to represent channels or frequencies

• Traditionally, in the infrared we specify the 
channels in units of wavenumbers, or cm-1

– ν ≡ f/c
• f = frequency in Hertz (or s-1)
• c = speed of light = 29,979,245,800 cm/s

• Wavenumbers can be thought of as 
inverse wavelength, for example,
– ν ≡ 10000/λ

• λ = wavelength in μm (microns)
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Instruments measure radiance 
(energy/time/area/steradian/frequency-interval)

Convert to Brightness Temperature = Temperature that the Planck Function 
is equal to measured radiance at a given frequency.

This is 
what we 
measure 
and how 
we use 
the data.

This is how 
we usually 
show it.
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Thermal Sounder “Core” Products
(on 45 km footprint, unless indicated)

Radiance Products RMS Requirement Current Estimate
AIRS IR Radiance (13.5 km) 3% < 0.2 %

AIRS VIS/NIR Radiance 20% 10-15%
AMSU Radiance 0.25-1.2 K 1-2 K

HSB Radiance (13.5 km) 1.0-1.2 K (failed 2/2003)
Geophysical Products RMS Requirement Current Estimate

Cloud Cleared IR Radiances 1.0K < 1 K
Sea Surface Temperature 0.5 K 0.8 K
Land Surface Temperature 1.0K TBD

Temperature Profile 1K/1-km layer 1K/1-km
Moisture Profile 15%/2-km layer 15%/2-km

Total Precipitable Water 5% 5%
Fractional Cloud Cover (13.5 km) 5% TBD

Cloud Top Pressures 0.5 km TBD
Cloud Top Temperatures 1.0 K TBD
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AIRS Products
Temperature Profiles Water Vapor Profiles

Ozone

Clouds

Methane

SO2

Dust

CO

CO2
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Radiances versus Products

Radiance Retrieval Products

Product volume is large:  In practice, a spectral 
subset (10%), spatial subset (5%), and clear 
subset (5%) of the observations is made

Product volume is small: all instrument 
channels can be used to minimize all 
parameters (T, q, O3, CO, CH4, CO2, clouds, 
etc.)

Instrument error covariance is usually assumed 
to be diagonal.  For apodized radiances (e.g.
IASI) adjacent channels must be avoided.

Retrieval can be done in stages (most linear 
first).  Product error covariance has vertical, 
spatial, and temporal off-diagonal terms.

Require very fast forward model, and derivative 
of forward model.

Most accurate forward model is used with a 
model of detailed instrument characteristics.

Small biases in T(p), q(p), O3(p),due to model 
and satellite representation error, have large 
impact on derived products.

A-priori used in retrieval is different than 
assimilation model; however, vertical kernel 
information can be used to assimilate product.

Tendency to weight the instrument radiances 
lower (due to representation error) to stabilize 
the model.   Need correlation lengths to 
stabilize model horizontally, vertically, and 
temporally.

Retrieval maximizes the utilization of the 
radiances, since derived state is on instrument
sampling “grid” along the line-of-sight.
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AIRS Forecast Improvement

Improved Forecast Prediction
1 in 18 AIRS FOV’s
(6 hours in 6 Days)

Northern Hemisphere
October 2004 *

This AIRS instrument has provided a significant increase in forecast 
improvement in this time range compared to any other single instrument

Additional Improvement Using
All 18 AIRS FOV’s

(11 hours total in 6 Days)
Northern Hemisphere

Preliminary

J. LeMarshall, J. Jung, J. Derber, R. Treadon, S. Lord, M. Goldberg, W. Wolf, H. 
Liu, J. Joiner, J. Woollen, R. Todling, R. Gelaro  “Impact of Atmospheric Infrared 

Sounder Observations on Weather Forecasts”, EOS, Transactions, American 
Geophysical Union, Vol. 86 No. 11, March 15, 2005
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Examples of off-diagonal elements in 
instrument error coviance.

• In any instrument there are optical, electrical, and processing components that 
can correlate signals.

• In interferometers processing includes as step called apodization to make the 
instrument spectral characteristics localized (necessary for efficient radiance 
computations).   But, apodization causes a local spectral correlation (a channel is 
62% correlated with neighbor (±1 channel), 13% correlated with ±2 channels, 1% 
correlated with ±3 channels, etc.)

• In dispersive instruments each detector array has spectral correlation due to a 
common electronics system.   For example, in AIRS the spectral correlation is a 
function of the detector array module:

Therefore, the best use of satellite radiances requires ability to 
characterize ever detail of the instrument and processing.
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Example of temperature retrieval 
error covariance

• An example of temperature 
retrieval correlation (minimum 
variance method) for the AIRS 
instrument

• Top of atmosphere radiances 
(TOA) are used to invert the 
radiative transfer equation for 
T(p).

• This results in a correlation 
that is a vertical oscillatory 
function.

– TOA radiances are 
minimized, but

– An error in one layer is 
compensated for in other 
layer(s).

1100 mb

100 mb

1 mb

10 mb

1100 mb

Therefore, the use of retrieval products requires knowledge of retrieval 
“averaging kernels” and/or error covariance estimates.
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Spectral Coverage of Thermal Sounders 
(Example BT’s for AIRS, IASI, & CrIS)

AIRS, 2378
Channels

CrIS 
1305

IASI, 8461
Channels

CO2 CO2O3 COCH4
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Instrument Random Noise, NEΔT at 250 K
(Interferometers Noise Is Apodized)

CO2

CO2

CH4

CO
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Examples of AIRS Spectra
20-July-2002 Ascending LW_Window
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AIRS observations of tropical storm Isadore

on 22 Sept 2002 @ ~19:12-19:18 UTC

~999 cm-1 radiances

Brightness temperature spectra

Brightness Temperature Spectra reveal changes in atmosphere 
from eye to boundary of Tropical Cyclone
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For a large global ensemble we 
can compute <R> and RRT

Anticorrelated: BLUE

Positive: Correlation: Green →
Yellow → Red

Diagonal is from upper left to 
lower right in this figure

“Checkerboard” pattern results 
from wings of lines begin 
correlated with near neighbor 
cores of lines.

667 cm-1 (stratospheric) is 
anticorrelated with tropospheric 
channels.

15  μm band (600-700 cm-1) and 
4.3 μm band (2390 cm-1) are 
correlated (measure same thing)
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Information Content of AIRS: 
Eigenvalues of RRT

Transition from Signal to Noise 
Floor
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AIRS has roughly 90 pieces of 
information in 2378 chl’s
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First 4 Eigenvectors of AIRS 
Radiances: Real & Simulated
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Information content of the AIRS, IASI, 
and CrIS radiances is approx. the same.
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Constraints and Assumptions for the 
AIRS Science Team Algorithm

• One Granule of AIRS data (6 minutes or 1350 “golf-balls”) 
must be able to processed, end-to-end, using ≤ 10 CPU’s 
(originally 10 SGI 250 MHz CPU’s).   That is, one retrieval 
every 0.266 seconds.

• Only static data files can be used
– One exception: model surface pressure.
– Cannot use output from model or other instrument data.
– Maximize information coming from AIRS radiances.

• Cloud clearing will be used to “correct” for cloud 
contamination in the radiances.
– Amplification of Noise, A,  is a function of scene  0.33 ≤ A < ≈5
– Spectral Correlation of Noise is a function of scene

• IR retrievals must be available for all Earth conditions within 
the assumptions/limitations of cloud clearing.

• Temperature retrievals: “1 K/1-km” was the single “success 
criteria” for the NASA AIRS mission.
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AIRS Science Team:
Authors of the Algorithm Components

• Phil Rosenkranz (MIT)
– Microwave (MW) radiative transfer algorithm
– Optimal estimation algorithm for T(p), q(p), LIQ(p), MW emissivity(f), 

Skin Temperature
• Larrabee Strow (UMBC)

– Infrared (IR) radiative transfer algorithm
• Larry McMillin (NOAA)

– Local Angle Correction (LAC) algorithm
• Mitch Goldberg (NOAA)

– Eigenvector regression operator for T(p), q(p), O3(p), IR emissivity(υ), 
and Skin Temperature

• Joel Susskind (GSFC) & Chris Barnet
– Cloud Clearing Algorithm
– Physical retrieval using SVD for T(p), q(p), O3(p), Ts, εIR, CTP, Cloud 

Fraction
• Chris Barnet (NOAA)

– Physical Retrieval (currently using SVD) for CO(p), CH4(p), CO2(p), 
HNO3(p), N2O(p), SO2
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Sounding Strategy in Cloudy Scenes:
Co-located Thermal & Microwave (& Imager)

• Sounding is performed 
on 50 km a field of 
regard (FOR).

• FOR is currently 
defined by the size of 
the microwave sounder 
footprint.

• IASI/AMSU has 4 IR 
FOV’s per FOR

• AIRS/AMSU & 
CrIS/ATMS have 9 IR 
FOV’s per FOR.

• ATMS is spatially over-
sampled can emulate 
an AMSU FOV.

AIRS, IASI, and CrIS  all 
acquire 324,000 FOR’s per day
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Spatial variability in scenes is used 
to correct radiance for clouds.

• Assumptions,   Rj = (1-αj)Rclr + αj Rcld
– Only variability in AIRS pixels is cloud 

amount, αj
• Reject scenes with excessive surface & 

moisture variability (in the infrared).
– Within FOR (9 AIRS scenes) there is 

variability of cloud amount
• Reject scenes with uniform cloud amount

• We use the microwave radiances and 9 
sets of cloudy infrared radiances to 
determine a set of 4 parameters and quality 
indicators to derive 1 set of cloud cleared 
infrared radiances.

• Roughly 70% of any given day satisfies 
these assumptions.

Image Courtesy of Earth Sciences 
and Image Analysis Laboratory, 
NASA Johnson Space Center
(http://eol.jsc.nasa.gov). STS104-
724-50 on right (July 20, 2001).
Delaware bay is at top and Ocean 
City is right-center part of the 
images.
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Spatial variability in scenes is used 
to correct radiance for clouds.

• We use a sub-set (≈ 50 chl’s) of computed radiances from 
the microwave state as a clear estimate, Rn= Rn(X) and 9 
sets of cloudy infrared radiances, Rn,j to determine a set 
of 4 parameters, ηj.

• Solve this equation with a constraint that ηj ≤ 4 degrees of 
freedom (cloud types) per FOR

• A small number of parameters, ηj, can remove cloud 
contamination from thousands of channels.
– Does not require a model of clouds and is not sensitive to cloud 

spectral structure (this is contained in radiances, Rn,j)
– Complex cloud systems (multiple level of different cloud types).
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Example of cloud clearing correlated 
error from AIRS Cloudy Spectra

Example AIRS spectra at 
right for a scene with 
α=0% clouds (black), 
α=40% clouds (red) and 
α=60% clouds (green).

Can use any channels 
(i.e., avoid window 
regions, water regions) to 
determine extrapolation 
parameters, ηj

Note that cloud clearing 
produces a spectrally 
correlated error

In this 2 FOV example, the cloud clearing 
parameters, ηj, is equal to ½<α>/(αj-<α>)
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Cloud clearing dramatically increases 
the yield of useable products

• AIRS experience:
– Typically, less than 5% of 

AIRS FOV’s (13.5 km) are 
clear.

– Typically, less than 2% of 
AIRS retrieval field of 
regard’s (50 km) are clear.

• Cloud Clearing can   
increase yield to 50-80%.

• Cloud Clearing reduces 
radiance product size by 
1:9 for AIRS and 1:4 for 
IASI.
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Statistical Regression Retrievals
(see Goldberg et al. 2003)

• Statistical eigenvector regression uses Je observed spectra 
(on a subset of M “good” channels) to compute 
eigenvectors.   The spectral radiance for scene j, Rn(m),j, can 
then be represented as principal components, Pk,j

• The eigenvectors can be determined using a couple of days 
of satellite (cloudy) radiances by solving
 λk = Ek,m·(Δθm,jΔθT

j,m)·ET
m,k
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Statistical Regression Retrievals
(continued)

• A regression, Ai,k, between a “truth” state parameter i, Xi,j, 
and principal components (centered about mean of 
ensemble) can be computed.

• Truth states, as we will discover in lecture #3, are difficult to 
come by.   We can use models (AIRS Science Team 
Approach uses ECMWF), radiosondes, etc.

• The equation above is solved by least squares.  Since it 
uses a truncated set of principal components (AIRS Science 
Team Approach uses 85/1600) the inversion does not need 
to be regularized.
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Pro’s and Con’s Of Statistical 
Regression Retrievals

Pro’s Con’s

Does not require a radiative transfer 
model for training or application.

Training requires a large number of co-
located “truth” scenes.

Application of eigenvector & regression 
coefficients is VERY fast and for hyper-
spectral instruments it is very accurate.

The regression operator does not provide 
any diagnostics or physical interpretation 
of the answer it provides.

Since real radiances are used the 
regression implicitly handles all systematic 
instrument calibration issues.   This is a 
huge advantage early in a mission.

The regression answer builds in 
correlations between geophysical 
parameters.   For example, retrieved O3
in biomass regions might really be a 
measurement of CO with a statistical 
correlation between CO and O3.

Since clouds are identified as unique 
eigenvectors, a properly trained 
regression tends to “see through” clouds.

Very difficult to assess errors in a 
regression retrieval without the use of a 
physical interpretation.



36

Review: Traditional Least Squares

• A linear system of n equations of an observable, yn, 
and a model, Kn,j, can be expressed as follows

• An unconstrained least squares fit, when n > j, can 
be found by inversion of Kn,j

• Where the inverse of a asymmetric matrix is given 
by:
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Example of LSQ #1
Polynomial

• For example, if the desired fitting equation is a 
polynomial given by

• Then Kn,j is given by
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Example of LSQ #2
Polynomial plus sine function

• Suppose we wanted to fit an oscillating 
function (e.g., the Mauna Loa 
measurement of CO2(t)).  The fitting 
function could be given by 

• And Kn,j is given by
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Unconstrained LSQ retrieval
• For non-linear LSQ (where Kn,j may be a function of the state 

parameters), xj

• And we may want to impose weighting on the observations

• The solution can be written in an iterative form

• The linear algebra solution is identical to minimization of a cost function
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What we learn from using LSQ 
analysis of hyper-spectral radiances

• Linear variables are more stable
– For example, log(q) is better than q

• Weighting can mitigate geophysical channel 
interactions

• Can minimize “null space” error by selecting unique 
(i.e., non-interacting) geophysical parameters

• Error in product space can be estimated (and 
propagated)
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Physical retrieval is a minimization of 
a constrained cost function

Covariance of observed minus computed radiances: includes instrument 
noise model and spectral spectroscopic sensitivity to components of the 
state, X, that are held constant (physics a-priori spectral information).

Derivative of the forward model is 
required to minimize J.

Covariance of products (e.g., T(p), q(p), CO2(t) ) can be used to optimize 
minimization of this underdetermined problem.  Need to decide how much a-
priori statistics is desired in the product.   For climate products one can use a 
minimum variance approach (C = λI) to eliminate inducing correlations.  For 
weather, geophysical correlations (model statistics) are most likely desired.
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Physics knowledge is what allows 
interpretation of spectra

(details given radiative transfer talk)

• Given an estimate of the atmospheric 
state we can compute transmittance.

• Weighting functions, dR/dτ, determine 
where transmittance changes quickly.

• Kernel functions, K, includes effect of 
lapse rate on a channels sensitivity.

• If we map measured brightness 
temperature to altitude of sensitivity we 
can get a reasonable estimate of the 
temperature profile directly from the 
spectrum.
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Advantage of high spectral resolution is 
vertical sampling ..and.. resolution 

Sampling over rotational bands
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The Inverse Solution: Low Resolution 
Instruments

Traditional methods (Rodgers, Eyre, etc.) had to 
rely on the statistics of the a-priori term (models, 
climatologies, etc) due to lack of information from 
the measurements (HIRS/MSU had 23 sounding 
channels).  Typically the instrument error is 
neglected, that is N-1 = I, in this formulation.

Measurement 
Covariance

Constraint Weighted Average of 

Observations & a-priori
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The Inverse Solution:
Hyper-spectral Instruments

• AIRS: 2378 channels
• IASI: 8461 channels

Hyper spectral Instruments measurements 
have much higher information content: 
AIRS inverse method exploits the high 
information content of the instrument  &    
a-priori information in the radiative physics 
without a penalty in execution time.
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Iterative Solution to the Cost 
Function has many forms

• Optimal estimation can “pivot” off of the a-priori state.

• Equivalent to “pivoting” from the previous iteration:

• The background term, modifies obs-calc’s to converge to a 
regularized solution.   Form used in our algorithm:
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The cost function minimizes differences 
between observations and computed radiances

• Linear minimization of 
cost function is 
equivalent to 
expanding Obs-calc’s 
into a Taylor expansion 
and minimizing with 
constrained LSQ fitting.

• In a linear operator, the 
different components of 
geophysical space can 
be separated.
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The Problem is Physical and Can 
be Solved by Parts

• Careful analysis of the physical 
spectrum will show that many 
components are physically 
separable (spectral derivatives are 
unique)

• Select channels within each step 
with large K and small en

• This makes solution more stable.
• And has significant implications 

for operational execution time.
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Sensitivity Analysis for Temperature 
Retrieval in 15 µm Band

wave number (cm-1)

1K temperature 
perturbation

10% water 
perturbation

10% ozone 
perturbation
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Step 1: Temperature Solution

...3
33

322 +++=
TTTTT

CCRCCR KOOKKqqKRRN δδδδδδ
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Sensitivity analysis for water vapor 
retrieval in 6.7 µm band

wave number (cm-1)

1K temperature 
perturbation

10% water 
perturbation

10% ozone 
perturbation
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Step 2: Water vapor solution

...3
33

311 +++=
TTTTT

CCRCCR KOOKKTTKRRN δδδδδδ
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Sensitivity analysis for ozone retrieval in 
9.6 µm band

wave number (cm-1)

1K temperature 
perturbation

10% water 
perturbation

10% ozone 
perturbation
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...2211 +++=
TTTTT

CCRCCR KqqKKTTKRRN δδδδδδ

Step 3: Ozone solution
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Simplified Flow Diagram of AIRS 
Science Team Algorithm

Microwave 
Physical for T(p), 
q(p), LIQ(p), ε(f)

Climatological 
First Guess for all 

products

Initial Cloud 
Clearing, ηj, Rccr

Improved Cloud 
Clearing, ηj, Rccr

Final Cloud 
Clearing, ηj, Rccr

IR Regression for 
Ts, ε(ν), T(p), q(p)

IR Physical Ts, 
ε(ν), ρ(ν)

IR Physical Ts, 
ε(ν), ρ(ν)

IR Physical T(p)

IR Physical T(p)

IR Physical Ts, 
ε(ν), ρ(ν)

IR Physical q(p)

IR Physical O3(p)

IR Physical CO(p)

IR Physical HNO3(p)

IR Physical CH4(p)

IR Physical CO2(p)

IR Physical N2O(p)

Note: Physical retrieval steps that 
are repeated always use same 
startup for that product, but it uses 
retrieval products and error 
estimates from all other retrievals.

MIT

FG CCR

RET
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1DVAR versus AIRS Science Team Method

1DVAR AIRS Science Team Approach
Solve all parameters simultaneously Solve each state variable (e.g., T(p)), separately.

Error covariance includes only instrument model. Error covariance is computed for all relevant state 
variables that are held fixed in a given step.   Retrieval 
error covariance is propagated between steps.

Each parameter is derived from all channels used 
(e.g., can derive T(p) from CO2, H2O, O3, CO, … 
lines).

Each parameter is derived from the best channels for 
that parameter (e.g., derive T(p) from CO2 lines, q(p) 
from H2O lines, etc.)

A-priori must be rather close to solution, since state 
variable interactions can de-stabilize the solution.

A-priori can be simple for hyperspectral.

Regularization must include a-priori statistics to allow 
mathematics to separate the variables and stabilize 
the solution.

Regularization can be reduced (smoothing terms) and 
does not require a-priori statistics for most geophysical 
regimes.

This method has large state matrices (all parameters) 
and covariance matrices (all channels used).  
Inversion of these large matrices is computationally 
expensive.

State matrices are small (largest is 25 T(p) 
parameters) and covariance matrices of the channels 
subsets are quite small.   Very fast algorithm.  
Encourages using more channels.

Has never been done simultaneously with clouds, 
emissivity(ν), SW reflectivity, surface T, T(p), q(p), 
O3(p), CO(p), CH4(p), CO2(p), HNO3(p), N2O(p)

In-situ validation and satellite inter-comparisons 
indicate that this method is robust and stable.   
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• Simultaneous (1DVAR) versus sequential steps discussion 
isn’t new.   It has been going on for more than 30 years!

• It really boils down to Physics versus Statistics – although in 
the modern era this distinction has been blurred.
– Regression and Neural Network Approaches
– Use of geophysical covariance to regularize the under-determined 

problem.
• See the discussion in Rodgers, C.D. 1977. “Statistical 

principles of inversion theory.” in ”Inversion Methods in 
Atmospheric Remote Sounding” (ed. A. Deepak) p.117-138.
– This discussion is also transcribed in Section 22.2 of my notes 

(reference/rs_notes.pdf).
• As in all things, the answer may lie in the middle ground.    We 

are exploring adding some a-priori statistics to help in certain 
geophysical domains (e.g., lower boundary layer T(p), etc.) 
and we may explore some simultaneous retrievals 
(T(p)/emissivity, etc.) to improve the products.

Some Final Thoughts on Remote 
Sounding Approaches
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Sidebar: Vertical Averaging Functions
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Using the inversion equation to 
derive Vertical Averaging Functions

• Our retrieval equation can be written as

• Note that this equation is really a weighting average 
of the state determined via radiances and the a-
priori.
– The radiance covariance can be written as KTN-1K, in 

geophysical units, and
– The product covariance is given by [KTN-1K + C-1]-1
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We can derive the averaging function 
from our minimization equation

• As we approach a solution, we can linearize the 
retrieval about a state that approaches the “truth”

• And simplify by replacing the region highlighted in 
green above with the variable G

zero
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Computing the averaging function

• The vertical averaging function is the amount of the 
derived state that came from the radiances

• And I-A is the amount that came from the prior

Retrieval covariance Inverse of a-priori
covariance
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Value of the vertical averaging function?

• A is the retrieval weighting of the channel kernel functions (think of a 
retrieval operator as an integrator of data)

• When comparing correlative measurements (such as high vertical 
resolution sondes or profiles acquired by aircraft) the validation 
measurements 
– Must have similar vertical smoothing and
– Should be “degraded” by the fraction of the prior that entered the solution (i.e., 

in regimes were we don’t have 100% information content)
– In essence, the “truth” data is run through the retrieval filter (averaging 

function) to produce a profile that is directly comparable to the product derived 
from the instrument radiances.

• When using retrieval products the A matrix 
– Describes the vertical correlation between parameters
– Tells you how much to believe the product and where to believe the product.
– A-priori assumptions can be removed from the solution if we are in a linear 

domain.
– Given the error covariance of the a-priori, Cj,j, the averaging function can be 

used to derive the propagated error covariance of the retrieval.
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Sidebar:

Comparison of Dispersive and 
Interferometric Instruments

(10 Slides)
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AIRS Optical Diagram

Only moving parts on AIRS are
1. Scan mirror

2. Sterling Cooler Pistons 
(mechanical cooler required to 
cool & control focal plane at 58K)

12.8 lines/mm



65

AIRS Instrument (continued)

• Entrance Slits, with 
interference filters to 
select grating order and 
to remove stray light, 
are used to map 
spectral regions onto 
focal plane linear 
arrays.

• Optical design is “pupil 
imaging” to eliminate 
spatial sensitivity within 
a FOV

• Resolving Power is 
inversely related to slit 
width   RAIRS=1200 NOTE: Each detector is ≅ 50 μm

R = (FL/W)*tan(θ) = 227/3*tan(85o)
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Illustration of a Simplified Michelson 
Interferometer

NOTE: The IASI design is much more complex.  Mirrors are corner cubes (2 
reflections, but very easy/stable to align).  Twelve detectors are employed to improve 
signal-to-noise (3 bands/spectra) and sample 4 FOV’s simultaneously.
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IASI Optical Diagram

IASI has 4 FOV’s measured 
simultaneously

Corner cubes are used to 
maintain alignment in 
space environment.

Small number of detectors 
allows a passive cooler 
(90 K) can be used.

Moving parts in IASI:

1. Scan mirror

2. Corner Cube (CC1)



68

Interferometer Measures the 
Cosine Transform of Radiance

At x=0, a large contribution from all frequencies occurs.  The “center burst” is 
equal to the total radiance within a spectral band.

At x <> 0, the detector measures the sum of all frequencies in the pass-band.  
Constructive and destructive interference occurs as a function of OPD .
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What is Apodization
(literal translation is “remove the foot”)

• An apodization function is a  
multiplied by interferogram.
– Most interferometers have 

some amount of “self-
apodization” due to change in 
throughput as the mirror 
moves.

– If the apodization function 
does not have zeroes, then 
the process is reversible.

• This is equivalent to a running 
mean in the spectral domain.

• Hamming’s apodization 
function is a 3-pt weighted 
running mean.

• Apodization is a trade-off 
between side-lobes and the 
width (or area) of the central 
lobe
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IASI Apodization Function is a 
Truncated Gaussian

NOTE: Gaussian Apodization DOES NOT Change the 
Information Content of Radiances
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Apodization Alters the ILS and Spectally 
Correlates the Noise.

• Interferometers measure interferograms 
(green curve) signal as a function of 
optical delay, δ

• Performing a inverse cosine transform 
will yield the spectrum.

• Un-apodized transforms (red) have a 
SINC(x)=SIN(x)/x instrument line shape 
(ILS).

• AIRS has a Gaussian ILS (black)
• Apodization can produce a ILS that is 

localized and has small (< 1%) side 
lobes. But the tradeoff is that the central 
lobe is wider and the signal is spectrally 
correlated between neighboring 
channels

Channel
Spacing

Gaussia
n

Hamming Blackman

±1 70.74% 62.5% 75.5%

±3 25.0% 13.3% 31.6%

±4 4.43% - 6.57%

±5 0.38% - 0.53%

±6 0.025% - -

Gaussian Hamming Blackman

FWHM /
FWHM(SINC)

1.682 1.5043 1.905

Random Noise 
reduction

1.735 1.586 1.812

Maximum Side-Lobe 0.45% 0.73% 0.12%

% of signal in central 
Lobe

95.1% 87.5% 99.8%
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Dispersive versus Interferometer

Dispersive optics are solid state, grating is analogous 
to a solid state interferometer”

Interferometer requires moving mirror that is stable 
over integration time (150 milli-sec for IASI & CrIS).

Linear arrays w/ read out integrated circuits make a 
large number of detectors feasible and very fast to 
read out.  Large number of detectors and read out 
circuits requires cooling.

Multiplex (Fellgett’s) Advantage: all f’s measured by 
one detector (sampled in interferogram domain).   
Each time sample measures entire spectrum, 
therefore, each wavelength sampled N times.

Detector operates in a more linear domain  because 
only small region of the spectrum is measures (i.e., 
there is no “center burst”).

Throughput (Jacquinot’s) Advantage: does not 
require a slit & optics less complicated.   One half of 
the light entering instrument strikes detector.

Frequencies are determined by geometry, therefore, 
instrument must be held constant in temperature.   
Small remnant frequency drift must be handled in 
radiative transfer.

Connes Advantage: Mirror distance (determines 
frequency of channels) can be measured with a 
reference laser that has a known frequency and is 
stable – therefore, a standard set of frequencies can 
be maintained.

Instrument design for multiple FOV’s is too complex; 
however, low noise means fast integration time and 
having all FOV’s measured by the same instrument 
can be considered an advantage.

Multiple FOV’s can be measured simultaneously.   
Sampling and resolution is determined by optical 
path and therefore, FOV’s must be  

Gratings are constant resolving power, therefore, 
both sampling and resolution change with frequency,  
Δν = R/ν

Continuous spectrum at constant resolution that is 
Nyquist sampled, Δν ≅ 0.9/L
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Which approach is most suitable for the 
space environment?

• All optics must be stable to vibration during integration time
– AIRS has no moving optical components except the scan mirror 

(common to all scanning instruments).
– IASI has corner cube mirror that moves 2 cm in 145 milli-seconds.
– CrIS has “porch swing” mirror that moves 0.8 cm in 145 milli-seconds.

• Interferometers for Earth applications are passively cooled.
– Detector responsivity is a non-linear function of temperature and small 

drifts will make it difficult to calibrate.
• Small drift in reference laser (laser diodes used are sensitive to 

temperature) makes long-term frequency calibration difficult.
• Interferogram has a large dynamic range and detector response is 

non-linear, therefore, the interferometer calibration is more 
complicated.

• Detectors are more sensitive to emissions from optics and 
spectrometer body and makes calibration more difficult due to phase 
shifts between scene and instrument.

• Calibration for cold-scenes is difficult, both due to non-linearity 
issues, and corrections for phase shift (instrument emission begins to 
dominate).
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